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Abstract

Single photons are very actively pursued for quantum optical applications due to
their robust nature against environmental influences. These applications benefit
from deterministic generation of indistinguishable single photons.

Quantum dot sources fabricated in a heterostructure with electrical contacts al-
lows the control of coupling between a photonic crystal waveguide and the quan-
tum dot. This control over the Purcell enhancement allows a tuneable efficiency
of the source. The electrodes also allow the study of the Stark tuning of quantum
dots and to analyse the effect of charge noise.

The control over quantum dot sources allows the deterministic generation of indis-
tinguishable single photons. Generating multi-photon states using multiple quan-
tum dot single photon sources induces problems since the generated photons are
distinguishable from each other. This occurs due to the random growth nature of
the quantum dots. Generating a multi photon state from a single quantum dot
source requires a temporal-to-spatial mode converter (i.e. demultiplexer). An effi-
cient 4 mode demultiplexer is demonstrated in this thesis with an output four fold
coincidence rate of 1.05 ± 0.05 Hz. Thorough analysis of all efficiencies from the
source till detection shows that this is the most efficient demultiplexer yet. The
generated four photon state can be used as a resource to generate heralded polar-
isation entanglement between two photons. With an indistinguishability between
the photons of 95%, a maximum heralding efficiency of 81% can be achieved. The
entanglement gate is built with a port-to-port efficiency of 88%, averaged over all
combinations. Incorporating end-to-end losses by coupling the entanglement gate
to the demultiplexer results in a maximum achievable heralding efficiency of 31%.

The demultiplexer is built such that it can be upgraded to 8 spatial modes. Adding
a second heralded entanglement gate allows proof of principle experiments of de-
vice independent quantum key distribution.
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Resumé

Enkelte fotoner bliver meget aktivt efterforsket til kvanteoptiske anvendelser, da
de er robuste overfor miljømæssige påvirkninger. Disse anvendelser kan drage
fordel af deterministisk dannelse af identiske fotoner.

Et kvantepunkt, som er fabrikeret i en heterostruktur med elektriske forbindelser,
giver mulighed for at styre koblingen mellem kvantepunktet og en bølgeleder i en
fotonisk krystal. Kontrollen over Purcell-forstærkningen tillader styring af effek-
tiviteten af enkeltfotonkilden. Elektroderne tillader også at studere Stark-tuningen
af kvantepunktet og at analysere effekten af ladningsstøj.

Kontrollen over kvantepunkts-enkeltfotonkilden tillader deterministisk generering
af identiske enkelte fotoner. Brugen af flere kvantepunkts-enkeltfotonkilder til
generering af multi-foton-kvantetilstande er problematisk, da fotoner fra forskellige
kvantepunkter ikke er identiske grundet den tilfældige dannelse af kvantepunk-
terne. Laves multi-foton-kvantetilstanden i stedet med ét kvantepunkt, skal der
bruges en tidslig til rumlig signalomformer kaldet en demultiplekser. I denne afhan-
dling bliver der demonstreret en effektiv demultiplekser med fire kanaler, som har
en firefoldig sammenfaldsfrekvens på 1.05 ± 0.05 Hz. Grundig analyse af alle op-
tiske tab fra fotonkilden til måleinstrumentet viser, at dette er den mest effektive
demultiplekser til dato. Den genererede fire-foton-kvantetilstand kan blive brugt
som en ressource til at danne annonceret polarisationssammenfiltring mellem to
fotoner. Med 95% identiske fotoner kan der maksimalt opnås en annonceringsef-
fektivitet på 81%. Sammenfiltringsporten er bygget med en indgang-til-udgang-
effektivitet på gennemsnitligt 88% beregnet over alle kombinationer mellem in-
dgang og udgang. Kombineres de optiske tab fra demultiplekseren med sammenfil-
tringsporten vil den maksimalt opnåelige annonceringseffektivitet være 31%.

Demultiplekseren er bygget, så den kan udvides til otte rumlige kanaler. At til-
føje en ekstra sammenfiltringsport gør det muligt at udføre experimenter, der kan
bevise princippet omkring apparatuafhængig kvantemekanisk nøglefordeling.
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Samenvatting

Er vindt veel onderzoek plaats naar enkelvoudige fotonen voor kwantumtoepas-
singen vanwege hun van nature hoge weerstand tegen omgevingsinvloeden. Deze
toepassingen kunnen grote voordelen halen uit het gecontroleerd genereren van
ononderscheidbare enkelvoudige fotonen.

Kwantumdot bronnen, vervaardigt in een gedoteerde, samengestelde halfgeleider
met elektroden, maken een gecontroleerde koppeling mogelijk tussen een foto-
nisch kristal met golfgeleider en de kwantumdot. De controle over deze Purcell-
versterking zorgt voor een regelbaar rendement van de enkelvoudige fotonenbron.
De elektroden geven ook de mogelijkheid de Stark-modulatie van een kwantumdot
en het effect van ruis door elektrische ladingen te onderzoeken.

Controle over kwantumdot bronnen staat beheerst genereren van ononderscheid-
bare fotonen toe. Het produceren van een meervoudige fotonentoestand door meer-
dere enkelvoudige fotonenbronnen, gebaseerd op kwantum dots, te gebruiken,
wordt bemoeilijkt doordat de fotonen van verschillende kwantum dotbronnen on-
derscheidbaar zijn. De onderscheidbaarheid ontstaat door willekeur in de groei
van kwantumdots. Voor het produceren van een meervoudige fotonentoestand
met één enkel kwantumdot is een tijd-naar-ruimte transformator nodig, een zo-
geheten demultiplexer. Dit proefschrift beschrijft een hoog-rendement vier-foton
demultiplexer met een meervoudige detectiesnelheid van 1.05 ± 0.05 Hz. Grondig
onderzoek naar alle fotonische verliezen laat zien dat de voor dit onderzoek ge-
bruikte demultiplexer het hoogste rendement tot nu toe biedt. De gegenereerde
vier-foton toestanden kunnen worden gebruikt voor de melding van polarisatie-
verstrengelde fotonen. Met een ononderscheidbaarheid van 95% tussen de foto-
nen kan een aankondigingsrendament van 81% worden bereikt met deze verstren-
gelingspoort. De verstrengelingspoort is gebouwd met een poort-naar-poort ren-
dement van 88%, gemeten gemiddelde over alle combinaties. Als de demultiplexer
en de verstrengelingspoort worden gecombineerd kan, met inachtneming van de
verliezen, een aankondigingsrendament van maximaal 31% worden bereikt.
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De opstelling van de demultiplexer is ontworpen om eenvoudig te worden uitge-
breid naar een acht-poorts demultiplexer. Als hier een tweede verstrengelingspoort
aan wordt toegevoegd, kan de werking van apparaat-onafhankelijke kwantum-
sleuteldistributie worden aangetoond.
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CH. 1
Introduction

Quantum mechanics started to emerge at the beginning of the 20th century
inducing a drastic change in the view of the physical world. This change started
with Max Planck’s quantised radiation in 1901 [1] leading to the wave-particle
duality of light. The wave-particle duality was followed up by Albert Einstein with
the photoelectric effect in 1905 [2, 3]. The experiment confirmed discretisation of
the system, assumed to be from the photons. Careful analysis later on showed
that the photoelectric effect can be explained with the discretisation of the atom
[4]. The atomic model with discretized energy states was introduced in 1913 [5] by
Niels Bohr. This quantisation formed the basis for quantum mechanics, formalised
by Werner Heisenberg in 1925 [6] and Erwin Schrödinger in 1926 [7] (See [8] or
any other quantum mechanics textbook for more). Max Born introduced the
probability amplitude in 1926 [9] to link the wave function with observables of
quantum mechanics.

The intrinsic random nature in quantum mechanics radically changed the view of
the world since all earlier theories assumed nature to be deterministic. Due to the
intrinsic randomness Albert Einstein assumed quantum mechanics to be an
incomplete theory and proposed the existence of local hidden variables together
with Boris Podolski and Nathan Rosen [10]. This lead to the EPR-Paradox.
Thorough analysis of John Bell resulted in a proposal on which local hidden
variables could be rejected [11], and therefore can establish quantum mechanical
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Chapter 1. Introduction

principles. The rejection of local hidden variables can be done with a Bell-test
where the violation of an inequality meant that the system can not be described
with local hidden variables. The first violation of the Bell-inequality was measured
in the eighties by Aspect, Grangier and Roger [12–14].

The progress in the understanding of quantum mechanics has lead to different
potential technologies. Two fields where the quantum advantage is significant and
feasible are computation and cryptography. The advantage can be understood
from the units in which computer calculate. A classical computer calculates in
discrete bits (a ’0’ or a ’1’), where a quantum computer calculates with qubits.
These qubits are a superposition of the two classical bits α |0⟩+ β |1⟩ where α and
β are normalisation constants with |α|2 + |β|2 = 1. More information can be
encoded on the qubit due to this superposition of two classical bits. Different
protocols that utilising this fundamental advantage of quantum mechanics have
been proposed over the last decades. Examples of protocols benefiting from the
advantage of quantum mechanics are the Deutsch-Jozsa protocol [15], Shor’s
algorithm [16], Grovers algorithm [17, 18] and the HHL-algorithm [19]. All
classical and quantum algorithms have a mathematical limit in the minimum
number of operations required to execute the algorithm. The advantage in the
quantum algorithms over the classical ones is the slower scaling in the number of
operations with increasing input size. This results in less required operations for a
quantum algorithm.

The first scheme for a universal quantum computer based on linear optics was
proposed in 2001 by Knill, Laflamme and Milburn [20]. The qubits in this scheme
are single photons that interfere with each other via a linear optical network of
phase shifters and beamsplitters. While this scheme implements a universal
quantum computer in a straightforward manner, the number of photons required
for operating a quantum algorithm that would outperform a classical computer is
technologically out of reach [21]. A more realistic scheme to prove quantum
advantage is a quantum simulator. Such simulator can only perform a single task,
in which it obtains a speedup due to the quantum effects in play. Possible
applications for a simulator is for example the interaction of molecules [22–25].
This is a hard task to calculate with a classical computer, when the number of
atoms and interactions increase. A controlled quantum system that emulates the
interactions and the complex quantum dynamics in the molecular system would
naturally be more advantageous. One of the pursued quantum simulators is the
BosonSampler [26, 27], which can be constructed from a network of linear optical
components [28–31]. The optical BosonSampler requires multiple indistinguishable
single photons at the input which are interfered through an optical network and
then detected. A BosonSampler simulates the output state of any unitary
evolution that can be mapped onto it. Calculating the output state of a
BosonSampler requires the calculation of matrix permanents, which is hard for a
classical computer. A BosonSampler does however not calculate the permanents of
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a matrix and cannot be used as a calculator.

Computation and cryptography go hand in hand since most of the current used
cryptographic schemes rely on computational complexity. Classical encryption
methods are mostly based on either a priori sharing an encryption key and
authentication key or on mathematical assumptions on the hardness of certain
calculations. One of these schemes that rely on computational complexity is RSA,
which relies on the factorisation of large integers and is assumed to be hard for a
classical computer. Shor’s algorithm on the other hand is expected to factorise
large number in a faster timescale than a classical computer is capable of,
imposing a risk on the RSA encryption method. The risk that a quantum
computer poses on current cryptography schemes can be overcome with quantum
cryptography. Various quantum cryptography schemes have been proposed that
enable secure communication which include Quantum Key Distribution [32–36],
Quantum Secure Direct Communication [37, 38], Quantum Key Recycling [39] and
Quantum Secret Sharing [40].

The route towards establishing the quantum advantage requires multiple
experimental resources. One of the pursued directions to show quantum advantage
is based on photonics due to the robust nature of single photons [31, 41, 42]. This
allows the scaling of the circuits performing quantum protocols. To harness the
benefits from quantum optics, efficient deterministic generation of multiple
indistinguishable single photons is required [43–45]. Traditional approaches consist
of non-linear photon source [46–48] which are limited by the generation efficiency.
The advances of quantum dot single photon source as near-ideal sources [49–51]
brings an alternative in the single photon generation. The fabrication of photonic
nanostructures around the quantum dots resulted in deterministic single photon
sources [52–56]. This gives an alternative for bright multi photon sources by active
temporal-to-spatial demultiplexing [57–59]. Recent measurements of high
indistinguishability over long time scales allows for this demultiplexing route [60].

This thesis focuses on the route towards quantum advantage using photonic
architectures. the thesis starts with the required background in Ch. 2, which
covers topics such as semiconductor physics, quantum confinement, and single
photon properties.

Chapter 3 introduces an efficient method to generate multiple photons using a
single quantum dot. This is performed by a temporal-to-spatial mode converter
consisting of a series of optical switches acting on the emission from a quantum
dot. This chapter demonstrates the generation of four spatially separated photons
employing the temporal-to-spatial mode converter.

Chapter 4 focuses on the effect of the nanostructures on the quantum dot
emission. The chapter deals with quantum dot embedded in a semiconductor
heterostructure with electrical contacts for control over the quantum dots. The
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gates enable charge control and tuning of the quantum dot emission. This chapter
also discusses the characterisation of an SPDC source, allowing the comparison of
properties between an SPDC source and a quantum dot source.

Chapter 5 discuses an application of the four-channel demultiplexer from Ch. 3.
This gate generates polarisation entangled photon pairs from the four photon
input states. Entangled photons are a crucial resource for quantum cryptography
and allows fundamental tests of quantum mechanics.

Chapter 6 introduces an optical circuit operating in the temporal domain, a
time-bin BosonSampler. The advantage of using a time-bin based BosonSampler
over a spatial BosonSampler is that the number of required optical elements does
not depend on the number of modes in the system. The calculation of the time
evolution of the state through the BosonSampler is shown with realistic optical
elements.
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CH. 2
Theoretical background

There are many proposals on using photons for applications as quantum informa-
tion processing [20, 26, 61] or quantum communication [32, 33, 35] going as far
as a quantum internet [45, 62]. Background knowledge on single photon sources
[50] and photon characteristics are required for these protocols, since photons are
the information carriers. This chapter discusses the required background for sin-
gle photon sources and photon properties. Section 2.1 describes the fabrication
of a single photon source in a semiconductor. Fabricating such a source requires
the knowledge of what a semiconductor is and which properties it has. This al-
lows the introduction of a quantum dot embedded in a semiconductor and how to
use it as a single photon source. Section 2.2 follows up on this by describing the
excitation and relaxation properties of such a quantum dot and how it can be al-
tered with the fabrication of nanostructures. Section 2.3 discusses the properties
of single photons and how to measure them, followed by discussing the efficiency
of quantum dot single photon sources. The last part touches on parametric down
conversion sources (Sec. 2.4), since this is another commonly used single photon
source.
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Chapter 2. Theoretical background

2.1 Properties of semiconductors
Semiconductor materials are commonly used in electronics because the electrical
properties can be determined from fabrication. This allows the construction of
small electrical devices in a single chip, such as electrical transistors. These tran-
sistors can be used for complex circuits, on which the Nobel prize was awarded
in 2000 [63]. There are many different type of semiconductors based on different
groups in the periodic table, such as the group-IV and group-III-V semiconductors
[64]. The advantage of semiconductors over conducting materials is that semicon-
ductors can be tuned to be conductive or resistive during fabrication, and after-
wards by applied external influences [64–66]. This tuning on conductivity during
fabrication can be done on the microscopic scale allowing the fabrication of small
electrical circuits.

To identify the differences between conductors, semiconductors and insulators,
we need to take a step back and look at the Bohr model of a single atom. In this
model, an atom has discrete electron orbitals that can be occupied by electrons.
Certain parameters and the orbital an electron is in determines the state of an
electron with a limited number of electron states per orbital. An electron state
is only occupied by a single electron since Pauli’s exclusion principle prohibit the
occupation of a state by multiple electrons [8] (p. 204) [4] (p. 38) [67] (p. 474).
Every state can be described by a different quantum numbers: n (principal quan-
tum number: n= 1, 2, 3, ...), l (angular quantum number: l= 0, 1, 2, ..., n − 1), ml

(magnetic quantum number: ml = −l,−l + 1, ..., , l − 1, l) and ms (spin quantum
number: ms = −s, ..., s) where s is the spin. When the system is in the lowest
energy state at 0 K all the electron states are filled up starting from the lowest en-
ergetic state. The electrons in the highest energetic orbital that is partially filled
are the valence electrons of the atom.

When an atom is brought into proximity of another atom, the orbitals hybridise
[64] (p. 83). This results in energy splittings around the original orbital energies
resulting in non-degenerate energy states. When multiple atoms are brought into
proximity, the orbitals of these atoms hybridises, resulting in many hybridised en-
ergy states around the original orbital energy levels. All these discrete hybridised
energy states can be treated as a continuum of states with sufficient atoms. All
the energy states created around an orbital can then be seen as an energy band,
creating a band-structure with all the orbitals. When this collection of atoms is
reduced to the lowest energetic state (cooled to 0 K), the electrons are in the low-
est states possible. The energy level of states up to where the electron fills up is
related to the Fermi level. This Fermi level is the electrochemical potential for
electrons and can be seen as a free electron kinetic energy, meaning that any elec-
tron with an energy larger than the Fermi level behaves as a free electron and lead
to electrical conduction. This causes different scenarios of how the orbitals hy-
bridise and to which energy level the electrons fill up. The first scenario is where
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Properties of semiconductors

Figure 2.1: Reprint from [68]. Schematic illustration of the differences between a
metal, semiconductor and insulator. Vertical axis represents the electron energy of
a state and the horizontal axis represent the three types of material. Left metal,
centre semiconductor, right insulator.

the hybridisation makes energy levels from different orbitals overlap around the
Fermi level. This ensures that at any non zero temperature an electron can occupy
a state above the Fermi level and conduct electricity. This is also the case when
the hybridised energy level do not overlap, but the Fermi level lies within an en-
ergy band. Both these cases ensures that the material behaves as a conductor and
are called metals. When the hybridised energy levels do not overlap and the Fermi
level lies between two bands, the material is called an insulator or semiconductor
[66] (p. 33). This scenario allows the definition of a valance band and conduction
band where the valence is the energy band with the highest energetic electron and
the conduction band the lowest energetic band without an electron. The energy
difference between the highest energy in the valence band and the lowest energy
state in the conduction band is the bandgap energy ϵg. The band structures and
Fermi levels for a metal, semiconductor an insulator are schematically shown in
Fig. 2.1.

The distribution of electrons over the energy states is depending on temperature
and can be calculated via the Fermi-Dirac distribution [8] (p. 241) [4] (p. 347)

f(ϵ) =
1

e
(ϵ−ϵf)
kbT + 1

, (2.1)

with ϵ as the energy of the state, ϵf the Fermi level, kb the Boltzmann constant
and T the temperature. This only describes the distribution over existing states
and does not take the density of states into account. If we take N(ϵ) as the num-
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ber of states at energy ϵ, the electron occupation density turn into

n(ϵ) = N(ϵ) · f(ϵ). (2.2)

The textbook difference between an insulator and semiconductor is the bandgap
energy, but this is a weak constraint since there are semiconductors with a larger
bandgap than certain insulators. A more practical difference is therefore the ap-
plicability of induced defects to tune the electrical properties of the material where
semiconductors can be doped with impurities. The introduction of doping adds
electrons (n-type) or removes electrons (p-type) from the material defining non
doped materials as intrinsic (i-type). Doping a semiconductor with an electron or
hole (removed electron), energy states are created inside the bandgap compensat-
ing for the addition or removal of the electron [66] (p. 23). Adding the extra en-
ergy states with dopants changes the band edges of the semiconductor depending
on the concentration of doping. Since the Fermi level and bandgap energy remains
constant, it creates a tool to alter the Fermi level relative to the band edges. In
case of a group-IV semiconductor, electrons (holes) can be added by replacing
some group-IV material by group-V (Group-III) material. in the case of Silicon,
the n-doping can consist of Phosphor, Arsenic or Antimony (Boron, Aluminium,
Gallium or Indium for p-doping). For a type-III-V semiconductor, the doping can
consist of a type-IV material replacing either the type-III (n-doping) or type-V
(p-doping) material. In case of GaAs (type-III-V semiconductor) this can be done
with Silicon (n-doping, replacing Gallium [69]) and Carbon (p-doping, replacing
Arsenic [69]).

2.1.1 Electrical tuning of energy bands
Adding doping tunes the band edges relative to the Fermi level, allowing the con-
struction of semiconductors with spatially varying energy bands. The most simple

Ec

Ef

Ev

P NP N

EvEv

EcEc

Ef

Ef

(a) (b)

Figure 2.2: (a) Doped semiconductor materials before merging with the Fermi
levels shifted towards a band edge. (b) The two doped materials merged together
forming a PN-junction around the intersection. The Fermi level is constant across
the material causing a depletion region around the connection surface modifying
the band edges. The grey shade illustrate states filled with electrons.
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device consist of a semiconductor where one side is p-doped and the other side n-
doped. The result is a PN-junction where the two different sides join as shown in
Fig. 2.2. The semiconductor with p-doping (left) and n-doping (right) are shown
in Fig. 2.2 (a). The Fermi level is shifted in the bandgap towards a band edge,
where the direction of the shift depends on the type of doping. The shaded area
indicate the valence band filled with electrons while the conduction band is empty.
Merging the two doped semiconductors together results in the band diagram of
Fig. 2.2 (b). Since the Fermi level is constant in thermal equilibrium, the band
edges obtain a spatial distribution in the depletion region. Since p-doped mate-
rial has excess holes and n-doped material excess electrons, there is a region where
the excess electrons and holes migrate to and recombine. This creates a region
with a build-in electric field which causes the energy-bands to shift. The shift can
be determined from the relative difference between the band edge and the Fermi
level of the different doped materials. The width of the depletion region can be
determined from the concentration of dopants, since the number of electrons that
migrated is known from the electric potential.

The calculation of the build-in electric field hold in thermal equilibrium, which
can be broken by applying an external electric potential. This results in a non-
constant quasi Fermi level, since the Fermi level is not defined if the material is
not in thermal equilibrium. This quasi Fermi level is altered by the applied elec-
tric potential, where a larger potential reduces the Fermi level. This occurs be-
cause the potential adds energy, with the result that less energy is required to add
an extra electron (as defined for the Fermi level). The energy bands shift along
with the quasi Fermi level, resulting in a tool to tune the electrical properties.

2.1.2 Effect of confinement
Another method to tune the band diagram of a semiconductor is to use materi-
als with different band gaps [70] (p. 145), as visualised in Fig. 2.3. This shows
two materials where a slab of material 2 is placed between two slabs of material
1. Material 2 has a narrower bandgap creating a localised area with different en-
ergy states. This area is confined by the narrow with of material 2, altering the
hybridisation of orbitals resulting in a change of the Density of Electron States
(DES). Spatial confinement results in discretized energy states along the confine-
ment direction as shown in the bottom of Fig. 2.3. The non confined direction
still has a continuous density of electron states.

Confinement of material 2 results in a change of DES, where the behaviour of the
DES changes with the number of dimensions along which the material is con-
fined [70] (p. 143). Figure 2.4 shows the confinement direction (top) and DES
(bottom) for (a) no confinement, (b) 1-dimensional, (c) 2-dimensional and (d)
3-dimensional confinement. The density of states can be calculated via the disper-
sion relation of the electron in the first Brillouin zone [71] of the semiconductor

9



Chapter 2. Theoretical background

Conduction band

Valence band

M1 M1M2

Figure 2.3: Confining a semiconductor slab within a semiconductor with a dif-
ferent bandgap energy (top). This creates discretized energy states along the
direction of confinement (bottom).

between all the symmetry points. The bottom of Fig. 2.4 shows the increased dis-
cretization of the DES, where the quantum dot shows a completely discretized
DES. Assuming a cube quantum dot, the energy of the electron in the lowest en-
ergy state can be calculated with [70] (p. 156)

Ee(k) = Eg +
ℏ2π2

2m⋆
eL

2
x

+
ℏ2π2

2m⋆
eL

2
y

+
ℏ2π2

2m⋆
eL

2
z

, (2.3)

where Lx (Ly,Lz) is the size of confinement along the x-direction (y-direction, z-
direction), m⋆

e the effective electron mass and Eg the bandgap energy of the con-
fined material if it was in bulk. The energy of a hole can be calculated in the same
fashion as the energy of the electron via

Eh(k) =
ℏ2π2

2m⋆
hL

2
x

+
ℏ2π2

2m⋆
hL

2
y

+
ℏ2π2

2m⋆
hL

2
z

, (2.4)

If the system is in the ground state meaning that all the valance band states are
occupied and all the conduction band states are empty, the required energy to ex-
cite an electron in the QD from the ground state to the first excited state can be
calculated. This excitation requires the generation of an electron-hole pair (ex-
citon) in the QD and requires the energy it takes to bring the electron from the
highest valence band state to the lowest conduction band state, which is

Eexciton = Ee + Eh = Eg +
ℏ2π2

2

(
m⋆
h +m⋆

e

m⋆
em

⋆
h

)(
1

L2
x

+
1

L2
y

+
1

L2
z

)
(2.5)
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(a) Bulk material
(3D)

(b) Quantum well
(2D)

(c) Quantum wire
(1D)

(d) Quantum dot
(0D)

EnergyEnergyEnergyEnergy

DES

Figure 2.4: Reprint from [72] Density of electron states (DES, bottom) for the
possible dimensionality of confinement (top). (a) No confinement (Bulk). The
DES is in all three direction continuous, resulting in a continuous increase with
energy. (b) 1 Dimensional confinement (quantum well). The energy states are dis-
crete in one dimension, resulting in a stepwise increase of the DES. (c) 2 Dimen-
sional confinement (quantum wire). The single direction in which the electrons
can move freely result in a decay DES after every energy step from the confine-
ment. (d) 3 Dimensional confinement (quantum dot). The discretization of the
energy states in all three dimensions results in a completely discretized DES.

2.1.3 Quantum dots
From the basic principle of the quantum dot a more realistic view can be estab-
lished. The quantum dot structures in this thesis are made from InAs located in
a GaAs structure. The quantum dots are fabricated via the Stranski-Krastanov
method [75] (p. 146) in which a layer of InAs is grown on GaAs. The lattice mis-
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Figure 2.5: (Adapted from [73, 74]) (a) Schematic of the grown quantum dots.
The blue dots represents the atomic layers of GaAs, on which a layer of InAs (or-
ange dots) is grown. Lattice mismatch between GaAs and InAs induces defects
forming quantum dots. (b) Band diagram representation of the QD embedded in
a GaAs substrate. The InAs quantum dot is connected to a wetting layer induced
by the monolayer of InAs forming a quantum well.
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Figure 2.6: reprint from [69] (a,b) Schematic of a p-i-n(-i-n) junction showing
the location of the quantum dots. The colours represent the doped areas (red:
p-doping; blue: n-doping; grey: intrinsic). Solid line indicates the conduction
band edge. The p-i-n-i-n structure has an extra n-layer to sandwich the intrinsic
QD-layer between two n-layers reducing the built in potential over the QD. (c)
Simulation of the p-i-n-i-n structure showing the conduction band, valence and
the Fermi level. The quantum dot layer is not taken into account for the band
edges due to the narrow width, but it is marked with a purple line. The doped
areas are colour marked where the intensity indicate the doping concentration.
The outer doped areas have a higher concentration (approximately factor 4 to 5
higher) to allow the fabrication of an Ohmic contact to a metal.

match between InAs and GaAs induce defects after the growth of approximately
1 or 2 monolayers of InAs [76]. These defects arise randomly over the sample and
grow a few nanometer high and encapsulated in another layer of GaAs. This quan-
tum dot formation is schematically shown in Fig. 2.5 (a) where the blue dots rep-
resent the GaAs and the orange dots the InAs. The band structure is shown in
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Fig. 2.5 (b) with from left to right (bottom to top in the sample) the bottom GaAs,
the InAs monolayer creating a quantum well (Also called the wetting layer), the
InAs quantum dot, and on top the encapsulating GaAs.

The quantum dot structure is located between doped GaAs layers with two com-
mon type of structures, p-i-n and p-i-n-i-n. The letters p, n and i indicate the or-
der of doping types. The quantum dots are located in the intrinsic layer of the
structure, where in the p-i-n-i-n case it is the intrinsic layer between the two n-
layers. The structures are shown in Fig. 2.6, with a schematic of the conduction
band edge for (a) the p-i-n structure and (b) the p-i-n-i-n structure. A simulation
of the p-i-n-i-n band structure is shown in Fig. 2.6 (c), where the quantum dot
layer is not taken into account in the simulation. The colours represent the dif-
ferent dopants (red: p-doping; blue: n-doping; grey: intrinsic), where the colour
intensity indicates the doping concentration. The numbers indicate the different
layers of the material and [69] gives more specific information on the layers (Dop-
ing concentration and thickness). The growth of the sample starts from the bot-
tom (the first n-layer) with Al0.75Ga0.25As which is used as a sacrificial layer to
make suspended structures. The p-i-n(-i-n) structures are grown on top of that
starting from the n-layers (Silicon doped [69]) and ending with the p-layers (Car-
bon doped [69]). Despite the fact that the QD is in the intrinsic layer, the con-
centration of dopants and small size of the structure ensures that the QD is in
a depletion region and obtained a slope of the band edges. The induced electric
field tunes the quantum dot energy levels, and can be further tuned with an exter-
nal applied electric field. The shifts of the confined energy states occur due to the
Stark-effect [77–79], where the linear term arise from the bulk stark effect and the
parabolic term from the quantum confined stark effect [80].

2.1.4 Excitation of energy states
An excitation of a quantum dot moves an electron from the valence band into the
conduction band generating an electron-hole pair. If the electron and hole are
bound to each other it is called an exciton [70] (p. 95), else they are a free elec-
tron and/or a free hole. The exciton decays when the electron hole pair recom-
bines. This releases the energy which can be in the form of a photon (radiative) or
phonon (non-radiative). The photons of interest for the experiments in this the-
sis are generated when an exciton in the lowest excited state decays radiatively.
An exciton in a higher excited state typically relaxes back into the lowest excited
state before it decays to the ground state. This occurs because intraband relax-
ation is in the time scale of 0.3 − 3 ps [81–84] while interband relaxation is in the
order of 1 ns. The excitation of the quantum dot can be performed via different
methods. The four most common optical excitations are shown in Fig. 2.7 with
(a) aboveband excitation, (b) wetting layer excitation, (c) p-shell excitation and
(d) resonant excitation. Methods (a) to (c) excite the quantum dot to a higher
excited state and requires the quantum dot to relax back into the first excited
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Figure 2.7: Different excitation schemes for a quantum dot. Every scheme requires
the absorption of a photon (blue), relaxation to the first excited state (except for
(d)) and a decay back into the ground state. The decay from the first excited
state to the ground state results in the emission of a single photon (red). The
shown schemes are (a) aboveband excitation, (b) wetting layer excitation, (c)
p-shell excitation and (d) resonant excitation. The differences in excitation occur
from the excitation laser wavelength.

state. The difference between the three is the location in the band structure where
the excitation occurs and with which energy. The advantage of these methods is
that the excitation wavelength is different from the emission wavelength and can
be spectrally filtered. The disadvantage is that it requires the intraband relax-
ation and that other charged states can be excited ((a) and (b)). The other charge
states occur if an exciton is generated of which the electron or hole gets trapped
by the quantum dot while the other becomes a free electron or hole. This alters
the energy levels inside the quantum dot and changes the required energy to cre-
ate an exciton. This automatically arises the advantages and disadvantages of (d)
(resonant excitation), which ensures that only the first excited state is excited.
This ensures that a previous excitation could not have charged the quantum dot.
Resonant excitation can also reach near perfect excitation of the first excited state
via π-pulse excitation [85, 86]. The disadvantage is that the wavelength of the ex-
citation laser and the emitted photons is identical which means that other means
of filtering than spectral filtering have to be used to remove the laser light in the
emission path.

2.2 Quantum dot single-photon source
A quantum dot in a semiconductor can act as a single-photon source which emis-
sion wavelength can be tuned by applying a voltage. A quantum dot in bulk ma-
terial can be treated as a dipole and therefore emits light in a dipole pattern. This
pattern is symmetric along the dipole axis, resulting in a low fraction of the emis-
sion into a specific direction. To create an efficient source from a quantum dot,
controlled and efficient collection of the photons is required by directing all the
emission into a desired direction. The directionality of emission can be controlled
by fabricating nanostructures around the quantum dot [50, 87, 88] allowing effi-
cient collection of the generated photons.
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2.2.1 Spontaneous emission
To quantify the control of emission from a quantum dot, the emission properties
have to be evaluated. Due to the tight three-dimensional confinement of a quan-
tum dot, it can be described as an artificial atom (See Fig. 2.11 in Sec. 2.2.3 for
the level structure). The general properties of a two level system can be described
with the Einstein Coefficients [4] (p. 48− 51) A21 (Spontaneous emission), B12

(absorption) and B21 (stimulated emission). These coefficients are related to each
other thus if one is known, the rest can be calculated. The coefficient for sponta-
neous emission is related to the lifetime of a state via [4] (p. 49)

τ =
1

A21
, (2.6)

where the coefficients are related via [4] (p. 51)

g1B12 = g2B21 (2.7)

and
A21 =

ℏω3

π2c3
B21, (2.8)

where g1 (g2) is the degeneracy of state 1 (state 2), ℏ is the reduced Planck con-
stant, ω is the radiation wavelength and c is the speed of light. To obtain the
transition rate between two states we use Fermi’s golden rule [4] (p. 51)

Wi−→f =
2π

ℏ
|Mif |2 g (ℏω) , (2.9)

where Mif is transition matrix element from the initial state (i) to the final state
(f) and g (ℏω) is the density of final states. The transition matrix element is cal-
culated via perturbation theory with an interaction Hamiltonian via |Mif |2 =∣∣∣⟨f | Ĥint |i⟩

∣∣∣2. When we sum over all possible final states f , the density of states
cam be represented as Dirac-delta function g (ℏω) = δ(ωi − ωf )/ℏ. The total radia-
tive decay rate is obtained by summing over all individual channels contributing
to the radiation, resulting in [64] (p. 260) [89] (p. 271)

γrad =
2π

ℏ2
∑
f

∣∣∣⟨f | Ĥint |i⟩
∣∣∣2 δ(ωi − ωf ). (2.10)

Since the quantum dot is smaller than the wavelength of the radiation, it can be
approximated as a point dipole. This allows us to write the interaction Hamil-
tonian as Ĥint = −d̂ · Ê where d̂ is the dipole interaction operator and Ê is the
electric filed operator [89] (p. 271). The radiative decay rate can now be written
as [89] (p. 276) [89] (p. 512)

γrad(r0, ω0) =
πω0

3ℏε0

∣∣∣⟨g| d̂ |e⟩
∣∣∣2 ρ(r0, ω0), (2.11)
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where r0 is the emitter location and ω0 is the frequency of the emitted light from
the excited state |e⟩ to the ground state ⟨g| with a local density of states (LDOS)
ρ(r0, ω0). The decay rate allows us to calculating the lifetime since they are each
other inverse

τ =
1

γrad
. (2.12)

The emission from the quantum dot is not monochromatic, due to the finite life-
time of the states. The frequency of the emitted light is proportional to the en-
ergy, and the uncertainty on the energy is linked to the uncertainty on the time
by Heisenberg’s uncertainty principle (∆E∆t ≈ ℏ [4] (p. 56− 57), [89] (p. 280)). If
∆t = τ then 1/τ ≈ ∆E/ℏ = ∆ω, meaning that the linewidth is the inverse of the
lifetime. The line shape of the frequency distribution is calculated via the Fourier
transform of the far field radiation of a single decay process [89] (p. 279),

δW

δΩδω
=

1

4πε0

|d|2 sin2 θω2
0

4π2c3γ2rad

[
γ2rad
4

(ω − ω0)
2 +

γ20
4

]
. (2.13)

This is the power radiated in a unit solid angle (δW/δΩ) per unit frequency inter-
val (δω) where θ is the radiation angle towards the z-axis of the dipole and ω is
the radiation frequency. This shows that the line shape of the emission is a prefac-
tor

1

4πε0

|d|2 sin2 θω2
0

4π2c3γ2rad

multiplied with a Lorentzian line shape [4] (p. 57) [67] (p. 540− 541)

γ2rad
4

(ω − ω0)
2 +

γ2rad
4

.

The full width half maximum of this Lorentzian line shape is γrad, as predicted
via Heisenberg’s uncertainty principle. It is also shown that the linewidth of the
resonance is limited by the lifetime of the state. It can however be broadened by
other effects such as noise and dephasing.

The lifetime of the quantum dot can be altered via two parameters as indicated
by Eq. 2.11. The first method is to alter the transition matrix element which de-
scribes the coupling between the excited and the ground state. This depends on
the material properties and the size of the quantum dot and is therefore deter-
mined during the growth of the quantum dot. The second point is the density of
states which depends on the environment around the quantum dot. We can make
nano-photonic structures around the quantum dot which allows us to alter the
lifetime of the quantum dot after the growth of it. The enhancement in the de-
cay rate by photonic structures is the Purcell factor which is the ratio between the
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decay rate in the cavity over the decay rate in bulk [4] (p. 203)

Fp =
3Q
(
λ
n

)3
4π2V0

, (2.14)

where Q is the cavity quality factor of the nanostructure, λ is the wavelength of
light in free space, n is the refractive index of the material and V0 is the mode vol-
ume of the cavity.

2.2.2 Nano-photonic structures for efficient collection
The emission of light from a quantum dot can be altered by embedding it in nano-
photonic structures [50, 87, 88], as discussed with the Purcell enhancement. These
structures alter the LDOS at the quantum dot and can be designed to enhance
emission into a desired optical mode. The two common structures either enhance
emission out of plane or enhance emission in plane which is routed to an efficient
collection coupler. Common methods to enhance emission out of plane are mi-
cropillar cavities [54, 90], photonic nanowires [91] and microlenses [92–94]. En-
hancing the emission in plane is commonly done with nano-beam waveguides [95]
and photonic crystal waveguides [88, 96–101]. In order to confine the emission in-
plane, the nano-structures have to be suspended to confine the light via total in-
ternal reflection. This requires a material with a large refractive index for the best
confinement. The suspension confines the photons in-plane and the nanostructures
determine the direction in the plane.

This thesis is focused on in-plane nano-photonic structures and we describe the
two in-plane structure in this section. There is also a description on the micropil-
lar cavities since this is a successful nanostructure for out of plane coupling.

Nanobeam
A schematic of the nanobeam waveguide is shown in Fig. 2.8 where the red bar
indicate the nanobeam waveguide and the grey material the bulk sample. The

Figure 2.8: Schematic of a suspended nanobeam waveguide (red bar). The grey
material represents bulk material of the sample.
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nanobeam waveguide is a high refractive index material surrounded by low refrac-
tive index material with a predefined cross-section. The confinement of the light
in the waveguide occurs due to total internal reflection at the semiconductor-air
interface. The larger the contrast in refractive index, the larger the out of plane
wave vector for the light has to be to escape the waveguide. The waveguides are
typically terminated with a grating coupler or a photonic crystal mirror. This
termination is connected to the bulk material to support the waveguide. Longer
waveguides are supported by tethers that are designed to minimise scattering of
light. Measured Purcell enhancement in a nanobeam waveguides is Fp ≈ 1.6 [102].

A common material in which these waveguides are fabricated is GaAs, which is
deposited on a Al0.75Ga0.25As substrate. The first fabrication step is to pattern
the planer structure, which is then etched through the GaAs. The second step
is to suspend the GaAs nano-photonic structure which is done by removing the
Al0.75Ga0.25As layer below the waveguide.

Photonic crystal waveguide
Another method to engineer the density of states around a quantum dot is by
making a photonic crystal around it. A photonic crystal is a regular pattern of
two material with a different refractive index. This regular pattern changes the
dispersion of light along the direction of the photonic crystal and blocks the prop-

Figure 2.9: Reprinted from [50]. Band diagram of a 2D-photonic crystal with a
triangular lattice. The frequency is scaled to the lattice parameter a with a hole
radius of a = 3r and a membrane height of t = 2a/3. The first Brillouin zone
is marked in the inset with the symmetry points Γ, M and X and the reduced
Brillouin zone in green. The propagation modes are shown as red lines, and the
bandgap is marked yellow. The blue area marks the light that is not confined in
the slab with the light line as the edge of this area.
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agation of certain frequencies into certain directions. There is a frequency range
that cannot propagate into any direction through the photonic crystal, which is
called the band gap (see Fig. 2.9). The photonic crystal can be in only a limited
number of direction, but also in all directions. These can therefore be either 1D,
2D or 3D, where 1D-photonic crystals are typically used as mirrors (So called
Bragg-reflectors) and 2D and 3D photonic crystals are typically used to fabricate
waveguides. Figure 2.9 shows the band diagram for a 2D photonic crystal in a
membrane. The patterning is done by fabricating holes with a low refractive index
into a membrane of high refractive index where the holes are placed in a regular
triangular lattice. The distance between the holes is the lattice parameter a, the
radius of the holes is r and the thickness of the membrane is t. The shown band
diagram is for a = 3r, t = 2a/3 and n = 3.5. The bands show the relation between
the scaled frequency and the allowed k-vectors where the k-vectors are shown over
the first reduced Brillouin zone. The blue area is the light that is not confined by
the slab and can escape in vertical direction. The red lines are all the different
modes that can propagate through the photonic crystal, and shows that there is
an optical frequency range that can not propagate through the photonic crystal.

A waveguide can be fabricated by removing a single line of holes from the pho-
tonic crystal. Such a defect allows a mode in the bandgap that can travel through
this defect, causing it to be a waveguide. These waveguides can be fabricated
around quantum dots. If the quantum dot has an emission frequency in the guided
mode, the emission into the waveguide is enhanced. Measured Purcell factors for
these structures consists of Fp = 2 [103] and Fp = 5 [52].

Micropillar cavity
Another structure commonly used to enhance the emission from a quantum dot is
a micropillar cavity. This consists of a 1D-photonic crystal in the vertical direc-
tion, or commonly called a Distributed Bragg Reflector (DBR). The quantum dot
is located in a defect layer of the DBR, which makes a cavity around the quantum
dot. The DBR layers are made with epitaxial growth and the pillar structure is
made by etching around the pillar with a typical diameter of 2 to 3 µm. The num-
ber of layers above and below the quantum dot is different since a high collection
efficiency on a single side is desired. Therefore there are more layers below the
quantum dot than above to ensure a higher reflectivity on the bottom to orient
the photon to the top. Figure 2.10 shows a schematic of a micropillar structure
with 3 DBR layers on the top and 6 DBR layers on the bottom.

The quantum dot in a micropillar cavity can be excited from the top [54] and
from the side [105–107]. Excitation from the side allows for an enhancement of
the extinction ratio since the laser light propagation is orthogonal to the emission
direction from the micropillar. Measured Purcell enhancements in micropillar cavi-
ties are Fp = 5.7 [108], Fp = 6.3 [54] and Fp = 7.6 [109].
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Figure 2.10: Reprint from [104]. Schematic of a micropillar cavity. The quantum
dot is located between two Bragg reflectors to create a cavity in the vertical di-
rection. The number of layers on the bottom is bigger than on the top (3 v.s. 6
in the schematic; 15 v.s. 25.5 in [54]). There are less layers on top to orient the
emission for collection. The radial emission is confined by the limited diameter of
the pillar (2.5 µm in [54]).

2.2.3 Spectral characterisation
The spectral properties from a quantum dot (Sec. 2.2.1) are altered by embedding
them in nanostructures. The properties are not only tuned by the nanostructures,
but also by the type of exciton and the applied bias voltage across the quantum
dot. The applied voltage induces a Stark tuning and can add or remove a charge
(electron or hole) from the quantum dot. The stark tuning alters the resonance
frequency and the lifetime while the addition or removal of a charges changes the
type of exciton. The electron-hole configuration for different excitons are schemat-
ically drawn in Fig. 2.11. The green circles (top half) indicate electrons and the
white circles (bottom half) indicate holes. The arrows through the electrons and
holes indicate the spin state. The recombination between an electron and a hole
can only happen if they are in the same energy level and have opposite spin. The
numbering of the energy levels is done from the bandgap, thus the first electron
state is the lowest energy level in the conduction band while the first hole state is
the highest energy level in the valance band. If a electron-hole pair can recombine
generating a photon is depending on the spin states of the electron and the hole
since their combined spin state result in the angular momentum state of the pho-
ton. Generated photon have either an angular momentum of 0 (linear polarised)
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Figure 2.11: Schematic of the electron-hole configuration for different excitons in
a quantum dot. (a) |Xb⟩ (bright exciton), bright excited state; (b) |Xd⟩ (dark
exciton), dark excited state; (c) |X−⟩ (negative trion), single negative charged
excited state; (d) |X+⟩ (positive trion), single positive charged excited state; (e)
|XX⟩ (bi-exciton), double excited state; (f) |X2−⟩, double negative charged state.
The arrows indicate the spin state and the recombination of an electron and hole
require opposite spin states to conserve spin (photons have no spin).

or ±1 (circular polarised). Electrons have a spin of ±1/2 and the holes of ±3/2
(heavy holes) resulting that the electron and hole should have opposite spins. The
simplest of excitons are drawn in Fig. 2.11 (a) and (b) since both contain only 1
electron and 1 hole. Figure 2.11 (a) is the bright neutral exciton |Xb⟩ since the
electron and hole can recombine while Fig. 2.11 (b) is a dark neutral exciton |Xd⟩
since the spins states prohibit recombination. The bright neutral exciton is also
written as X0 since it has zero net charge. Figure 2.11 (c) and (d) show the sin-
gle charges excitons (trions). These are a single exciton with an extra charge in
the quantum dot where Fig. 2.11 (c) has an extra electron resulting in a negative
charged exciton |X−⟩ and Fig 2.11 (d) has en extra hole resulting in a positive
charged exciton |X+⟩. It is also possible to have two excitons in the quantum dot
simultaneously, which is called a bi-exciton |XX⟩ (Fig. 2.11 (e)). The decay from
a bi-exciton always result in a |X0⟩. The last shown exciton is the double negative
charged exciton |X2−⟩ in Fig. 2.11 (f).

The different charged excitons are obtained by tuning valance and conduction
band slope with the applied bias voltage resulting in different capture rates for
electrons and holes in the quantum dot. Every exciton has different behaviour in
the lifetime and resonance frequency since the Coulomb interaction shifts the en-
ergy state of the electrons and holes. The variation in emission wavelength can
result in differences of a few nanometer. The dark exciton state is influenced in
the lifetime, which has to be long since the spin prohibits them from recombining.
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The rest of this work focuses on the bright exciton |Xb⟩ and the negatively charged
exciton |X−⟩. The bright exciton is a transition that can be split up again in two
different excitons, determined by the dipole moment [50]. Equation 2.11 shows
that the decay rate of a transition depends on the dipole moment, allowing the
differentiation between the x-dipole and y-dipole of the |Xb⟩. The dipole coupling
and energy level is different for both dipoles due to material properties which re-
sults in fine structure splitting [110–113]. This effect lifts the degeneracy between
the the x and y-dipole, resulting in two different energy levels for the two transi-
tions. Trions are not affected by this splitting of the degeneracy and have only a
single energy level [50], assuming that no magnetic field is applied. The two dif-
ferent dipoles are also affected differently by nanostructures resulting in different
Purcell enhancements to the two dipoles.

The method to measure the lifetime and linewidths are equal for the different ex-
citons where the type of exciton is selected with this bias voltage. The linewidth
of an exciton is measured resonantly, and can be done via different methods. The
methods used in this thesis are Resonant Transmission (RT) and Resonant Fluo-
rescence (RF). Both measurements require a narrow linewidth laser (CW) where
the frequency is scanned across the quantum dot resonance. For RT the quan-
tum dot has to be embedded in a waveguide with a coupler on both sides since the
laser is attenuated to a single photon level and coupled into the waveguide. The
laser photons interact with the quantum dot while travelling through the waveg-
uide and the other coupler then sends the transmitted photons to a single pho-
ton detector. This difference between RT and RF is schematically shown in Fig.
2.12, where RF excited the quantum dot from the top while RT travels through
the waveguide and interacts with the quantum dot.

RT

RF

Collection

QD Waveguide

Figure 2.12: Difference between Resonant Transmission (RT) and Resonant Flu-
orescence (RF) linewidth measurements on a quantum dot. Both cases have the
quantum dot embedded in a waveguide where RT requires a coupler on both sides
while RF only needs a coupler on one side. In RT an attenuated laser is coupled
into the waveguide, interacts with the quantum dot while traversing through the
waveguide and coupled to a single photon detector by the other coupler. In RF
is the quantum dot exited from the top. The emitted photon due to the decay is
then sent to a single photon detector via a coupler at the end of the waveguide.
To obtain the line shape, the used laser is swept in frequency.
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In both cases we measure the count rate depending on the laser frequency. The
profile of this count rate is the convolution of the exciton resonance with the laser
linewidth if we assume no noise. This occurs since the count rate at a certain laser
frequency is the interaction of the laser light with the exciton. In Sec. 2.2.1 we
derived that the frequency profile is a Lorentzian and this profile determines the
interaction strength between the laser light and the exciton. Since the linewidth of
the laser is narrow, we probe the Lorentzian linewidth which then appears in the
measured count rate when the laser frequency is swept. The construction of the
line shape and how the interaction works is described below.

Resonance fluorescence
In resonance fluorescence (RF) [114, 115] the quantum dot is excited by a laser
with the same energy as the transition energy. The quantum dot decays back to
the ground state with the emission of a photon into the waveguide. This photon
is collected via a coupler and send to a single photon detector. Due to the vast
number of laser photons, some of these are collected too. This requires filtering
between the emitted photons from the quantum dot and the laser photons, which
can be done by polarisation. Increasing the laser power increases the emitted pho-
tons as long as the laser is in the weak-field approximation. When the laser power
is increased into the strong-field limit, we can observe coherence effect between the
laser and the exciton. These coherence effects induce Rabi Oscillations [4] (p.177),
which are oscillations in the emitted photons depending on the laser power. There
is a power with maximum efficiency which is called π-pulse excitation.

Spectral characterisation is performed in the weak coupling regime. Measuring
these properties in RF introduces challenges since the detector can not discrimi-
nate between emission photons and laser photons. This can be solved by filtering
the light on a property where the laser and photons are different, such as polar-
isation. The photons emitted from the waveguide obtain a well-defined polarisa-
tion, while the laser is scattered light from the surface and laser coupled to the
waveguide. The laser coupling to the waveguide can be minimised by optimising
the input laser polarisation to couple minimally to the waveguide. The scattered
laser light is filtered out in the collection path since most scattered light is still
polarised. The ratio between the emission photons and the laser photons is the ex-
tinction ratio and can be measured by setting the laser at the frequency desired
to measure on and change the applied bias voltage over the quantum dot between
on-resonance and off-resonance. Emission count from the quantum dot are only
expected when the laser and quantum dot are on-resonance with each other. The
difference in count rate between the on-resonance and off-resonance is therefore
the emission rate from the quantum dot. The extinction ratio can then be calcu-
lated by dividing the emission rate by the background counts which is the count
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rate when the quantum dot is off-resonance. This results in an extinction ratio of

Ext =
Ion − Ioff
Ioff

, (2.15)

where Ion is the photon count rate when the quantum dot and laser are on-resonance
and Ioff is the photon count intensity when the quantum dot and laser are off-
resonance.

Resonance transmission
Another method to measure the linewidth of a quantum dot is by performing reso-
nance transmission. This requires a waveguide with a coupler on both sides, since
the laser has to be transmitted through the waveguide containing the quantum
dot. The coherent laser field interacts with the quantum dot, reflecting the sin-
gle photon components and transmitting the multi photon components [102, 116–
119]. This yields a method to find the exciton linewidth by scanning the resonance
with a laser. The larger the interaction between the laser and the quantum dot,
the more likely the single photon components are reflected and thus the lower the
detection rate. The resonance profile of the quantum dot is a measure of the in-
teraction with light of that frequency and therefore the reduction in count rate de-
pending on the laser frequency yields the line shape. The count rate has to be cor-
rected for frequency dependencies of the couplers and waveguide. The linewidth is
therefore determined from the normalised transmission which is obtained from the
ratio of when the quantum dot and laser are on-resonance versus off-resonance.
The tuning in and out of resonance is done by changing the bias voltage between
values where the quantum dot is on-resonance versus off-resonance. This results in
a normalised transmission of

Tnorm =
Ion
Ioff

, (2.16)

where Ion and Ioff are the same as in equation 2.15. This allows us to define a
transmission dip visibility, which is the maximum value of 1− Tnorm.

This method of measuring linewidths is less sensitive to laser scattering since the
couplers are optimised to couple light in and out of the waveguide. The power
used for RT is also orders of magnitude lower than for RF since we require single
photon components from the coherent state. The problem is that RT yields lower
count rates and the edges of the waveguide can form a cavity. If the quantum dot
resonance is not aligned with the cavity resonance, the line shape becomes a Fano
line shape [102, 116, 119]. The linewidth however remains equal.

Measuring quantum dot lifetime
The lifetime is measured by exciting the quantum dot with a narrow pulsed laser,
and measure the time it takes for the quantum dot to decay and emit a photon.
This time is measured by recording the time a laser pulse was generated and the
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time when a emission photon was detected. The time difference between these two
events is stored. This can be done many times to construct a histogram of all the
time differences to show the decay dynamics. Every excited state has an expo-
nential decay with a life time given in Eq. 2.12 and an amplitude decay given by
C(t) = e

−t
2τ [67] (p. 539) where C(t) is the amplitude probability of the excited

state and t is the elapsed time since the excitation. What we measure in the lab is
the probability P (t) = |C(t)|2 = e

−t
τ . If the decay consists of multiple decay paths

(e.g. x and y-dipole for the neutral exciton), the exponential decays are added

P (t) =
∑
n

pn · e
−t
τn , (2.17)

where Pn is the relative probability of that decay and τn the lifetime of the indi-
vidual decay. This shows that the neutral exciton has a bi-exponential decay due
to the x and y-dipole and that the trion is a single exponential decay. Lifetime
can be measured with different excitation methods (Fig. 2.7), where the different
lies in the preparation of the state.

2.3 Single photon characterisation
Single photons are not only characterised by their spectrum, but also by their
purity and indistinguishability. The source generating these photons is further
characterised by the generation efficiency of these photons. This section discusses
the different properties starting with the generation efficiency from a source (Sec.
2.3.1). Section 2.3.2 discusses the single photon purity and Sec. 2.3.3 the indistin-
guishability. Section 2.3.4 shows a method to calculate the source efficiency and
purity from a quantum dot via rate equation modelling.

2.3.1 Source efficiency
Generating single photons is ideally a deterministic process, but in reality losses
play a role. The quantum dot source is excited with a narrow pulse laser (< 10 ps)
with a fixed repetition rate (Frep). Due to the deterministic nature, every pulse
should yield a single photon from the decay of the excited state (Sec. 2.2.1). The
source efficiency describes the probability to obtain a photon from a single excita-
tion. The single photon rate collected from the source is given by Icts, resulting in
a source efficiency

ηsource =
Icts
Frep

. (2.18)

This is the ratio between obtained photons and excitation pulses, and includes
all losses. These losses can be divided in three major categories, the preparation
efficiency of the quantum dot pe, the waveguide collection efficiency β-factor and
the optical transmission T (including coupling efficiencies).
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The preparation efficiency (pe) of the quantum dot is the probability that the
quantum dot is excited to the target state and that radiative decay results in a
photon from the desired exciton. If the quantum dot is excited non resonantly, the
quantum dot can relax into a different exciton states. The decay can be measured
with a spectrometer from which the intensity in the desired wavelength range can
be compared to the total measured intensity. The ratio of these yield the prepara-
tion efficiency pe.

The next step in the source efficiency is the collection of the emitted photons into
the waveguide, which is given by the β-factor [52]

β =
Γwg

Γwg + Γrad + Γnon−rad
, (2.19)

where Γwg is the decay rate into the waveguide, Γrad is the radiative decay rate
not collected by the waveguide and Γnon−rad is the non radiative decay rate. The
β-factor is the decay into the waveguide divided by the total decay from the de-
sired exciton.

After the photon is coupled to the waveguide, it travels through the waveguide
and is collected by optical components. Propagation losses of the waveguide are
influenced by the intrinsic losses of the waveguide and by the quality of fabrica-
tion. Measured losses are in the range of 6.6 ± 0.5 dB/mm [120] to 0.16 dB/mm
[121]. The photons are coupled out of the waveguide and different techniques are
investigated to maximise the coupling efficiency (ηoc). Possible (but not all) strate-
gies are evanescent coupling [122–127], end-fire inverted tapers [52, 128] and grat-
ing scattering [52, 129–132]. After the photons are coupled out of the waveguide,
they travel through optical components to be prepared for the setup after the
gate. This efficiency can be measured classically by sending in a laser and mea-
sure the input power (Pin), followed by measuring the output power (Pout) and
take the ratio of these two.

2.3.2 Single photon purity
The single photon purity is the probability to obtain a single photon in a prede-
fined time interval. In case of a pulsed single photon source this is the probability
to have a single photon in the interval of the excitation. The purity can be condi-
tioned by selecting only the time intervals in which a photon was detected, remov-
ing all time intervals without a photon from the statistics. If we take P (n) as the
probability of having n photons, the unconditioned single photon purity is P (1)
and the conditioned single photon purity is P (1)/(1− P (0))†.

This shows that the single photon purity is depending on the distribution of pho-
ton number states. A common distribution of photon states is the coherent state

†∑
n P (n) = 1
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which describes the photon statistic of a laser. This is a Poissonian photon distri-
bution of [4] (p. 159) [133]

P (n) =
n̄n

n!
e−n̄, (2.20)

where n̄ is the mean photon number. Another common distribution is the Boltz-
mann distribution, describing photons from a thermal source. This is given by
[4] (p. 85)

P (n) =
1

n̄+ 1

(
n̄

n̄+ 1

)n
. (2.21)

Pure photon states are given by Fock states, where the exact number of photons is
know. This is described by

P (n) = δ(n− n̄). (2.22)

A Poissonian state with a large mean photon number can be approximated as a
Gaussian distribution, which is the typical photon number distribution of random
light. Measuring photon number states of more than 1 photon in a deterministic
fashion is non trivial, despite the existence of photon resolving detectors [134–
136]. Measuring the full probability distribution of all the different photon num-
ber states is therefore a hard task to perform to obtain the single photon purity.
There is however a different techniques to determine the single photon purity, the
second order correlation function (g(2)) which correlates different times of a signals
with each other via [4] (p. 111)

g(2)(t, τ) =
⟨I(t)I(t+ τ)⟩
⟨I(t)⟩ ⟨I(t+ τ)⟩

(2.23)

where I(t) is the intensity on time t and τ is the time delay in the signal. The ex-
pectation value does not depend on the time delay resulting in ⟨I(t)⟩ = ⟨I(t+ τ)⟩
yielding [89] (p. 320) [133]

g(2)(t, τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
(2.24)

Equation 2.24 assumes the correlation of a signal at two different times. To achieve
this we must split our signal and add a delay to one of the two detection paths.
The setup that can measure the second order correlation function is the Hanbury-
Brown-Twiss (HBT) setup, which is schematically represented in figure 2.13. The
stream of photons enters a 50 : 50 beamsplitter and both paths are sent to a single
photon detector. These detectors sent a signal when a photon impinged on it and
the signal from the detectors are correlated with each other. The signal from one
of the two detectors has a tuneable time delay τ and the signals are correlated to
each other according to Eq. 2.23. Transforming this equations to the single pho-
ton regime requires the intensities to be replaced by number operators, resulting
in [137]

g(2)(t, τ) =
⟨â†(t)â†(t+ τ)â(t)â(t+ τ)⟩
⟨â†(t)â(t)⟩ ⟨â†(t+ τ)â(t+ τ)⟩

. (2.25)
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Figure 2.13: HBT setup with light being split by a 50:50 beamsplitter and sent
to a detector on both arms. One of the detectors can apply a time delay τ to the
signal to correlated it over different time delays.

Time t is an exact time but the second order correlation function correlates a sig-
nal with a different time of itself. The exact time can therefore be set to t = 0
since only the time difference is relevant. two signals with each other using only a
relative time between the two signals. We can therefore take an arbitrary value for
t, including t = 0. This results in an equation giving the correlation between the
two detectors with a time delay τ .

The correlation measurements can be mode in either a pulsed excitation or a con-
tinuous excitations. The difference in the second order correlation function is that
pulsed excitation results in pulses in the second order correlation function. Th rea-
son for that is that if we excite with a time difference between the pulses of ∆τ ,
the coincidences occurs when τ is a integer multiplication of ∆τ .

The second order correlation function is by definition normalized to the total power.
Light with a random photon distribution and no power fluctuations result in no
correlations between the detectors and obtain a g(2)(τ → ∞) = 1 [4] (p. 111).
Pulses of photons have by definition power fluctuations since we can only obtain
photons during the pulses. Random light with fixed pulsing result then that the
height of the peaks at g(2)(τ >>) = 1, due to the normalisation. This normali-
sation to uncorrelated light renders the g(2)(0) as a parameter to distinguish dif-
ferent sources where it is either equal, bigger or smaller than one. This categori-
sation occurs because the g(2)(0) represent the correlation of a signal with itself,
which in a quantum regime results in the likelihood to have multiple photons at
the same time. Since g(2)(0) = 1 means a random distribution, there is a random
probability to have more than one photon while if g(2)(0) > 1, it is more likely to
measure a photon on the second detector if the first detector measured a photon
(bunching of photons). If the photon number follows the Boltzmann distribution
the measured g(2)(0) > 1. If g(2)(0) < 1, the second detector is less likely to have
a detection event if the first detector measured a photon (antibunching of pho-
tons). When g(2)(0) = 0 there were no coincidence between detector one and two,
meaning only pure single photons could be inserted in the HBT-setup. The terms
(anti)bunching comes from the principle that there is either a higher or a lower
probability to detect a second photon when the first photon was detected and they
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are therefore bunched or antibunched. Since the g(2)(0) is a measure of the prob-
ability to have multiple photons at the same time, it can be used to characterise
the number of photons emitted by a quantum dot source [138] (p. 174)

g(2)(0) =
n− 1

n
. (2.26)

2.3.3 Indistinguishability
Single photons have to be indistinguishable from each other to be useful in most
applications. This indistinguishability between photons can be measured with
a Hong-Ou-Mandel (HOM) setup, which is schematically shown in Fig. 2.14. A
HOM setup consists of a 50 : 50 beamsplitter with a detector in the two output
modes. Both input modes contain a single photon which are interfered with each
other on the beamsplitter. Labelling the input paths as path a and b and the out-
puts paths as c and d, the beamsplitter operation can be written as(

ĉ†

d̂†

)
=

1√
2

[
1 i
i 1

](
â†

b̂†

)
. (2.27)

where â†, b̂†, ĉ† and d̂† are the photon creation operators in the four different paths.

When two identical photons enter the beamsplitter via path a and b, the input
state can be written as â†b̂† |0, 0⟩. Enacting the beamsplitter operation on this in-
put state results in an output state of i

2

(
ĉ†ĉ† + d̂†d̂†

)
|0, 0⟩, showing that the out-

put state is bunched with either both photons in path c or both photons in path
d. This shows that the two detectors will never detect a photon at the same time,
thus there is never a coincidence count between the detectors. The two photons
can be made (partly) distinguishable by adding a time delay to one of the two
photons, as shown in Fig. 2.14 which has a time delay in path b. Increasing this
time delay sufficient results in completely distinguishable photons. The output
photons are labelled by their input port yielding the state

i

2

(
ĉ†aĉ

†
b − iĉ†ad̂

†
b + id̂†aĉ

†
b + d̂†ad̂

†
b

)
|0, 0⟩ .

If the time window to measure coincidences is longer than the time difference be-
tween the photons, we measure a coincidence between the detectors in 50% of the
cases.

The time delay added in path b can make the photons partial indistinguishable
and we define the time window for the coincidence to be larger than the time dif-
ference between the photons. The partial indistinguishability is denoted by Q, and
results in the transformations

â† 7→
[√

Q
(
ĉ†I + id̂†I

)
+
√

1−Q
(
ĉ†a + id̂†a

)] 1√
2

b̂† 7→
[√

Q
(
iĉ†I + d̂†I

)
+
√
1−Q

(
iĉ†b + d̂†b

)] 1√
2

(2.28)
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Figure 2.14: HOM-setup to measure the indistinguishability of two photon. Port a
and b are the inputs where port b has an option to delay the photon. Port c and
d are the output ports of the beamsplitter and contain a detector. If the photons
are perfectly indistinguishable, there will be no coincidence counts between the
detector, while perfectly distinguishable photon have a coincidence count in 50%
of the measurements.

where the distinguishable output modes are marked by the subscript a and b,
which denotes the input port it originates from. The subscript I denotes the indis-
tinguishable part of the photons. This is also the part that interferes in the beam-
splitter. If Q = 1 the state is identical to the perfectly indistinguishable case, and
setting Q = 0 results in the perfectly distinguishable situation. Taking the input
case of â†b̂†, the transformation results into

â†b̂† 7→ i

2
Q
(
ĉ†I ĉ

†
I + d̂†I d̂

†
I

)
+

i

2
(1−Q)

(
ĉ†aĉ

†
b − iĉ†ad̂

†
b + id̂†aĉ

†
b + d̂†ad̂

†
b

)
+ (2.29)

1

2

√
Q (1−Q)

(
iĉ†I ĉ

†
b − d̂†I ĉ

†
b + ĉ†I d̂

†
b + id̂†I d̂

†
b

)
+

1

2

√
Q (1−Q)

(
iĉ†I ĉ

†
a + d̂†I ĉ

†
a − ĉ†I d̂

†
a + id̂†I d̂

†
a

)
.

This shows again that Q = 1 yields the perfectly indistinguishable outcome while
Q = 0 results in the perfectly distinguishable outcome. There is however a part
which only occur in partly distinguishable photons. The indistinguishability can
be measured by applying a delay to path b resulting in the indistinguishability
parameter Q to be dependent of τ . If the detectors at path c and d are perfect
number resolving detectors, the detection probability of the three different states
(|2c, 0d⟩, |0c, 2d⟩, |1c, 1d⟩) can be calculated. We are interested in either a |1c, 1d⟩
or the sum of the |2c, 0d⟩ and |0c, 2d⟩ state, which probabilities depending Q are
plotted in Fig. 2.15 (a). Most detectors are non number resolving detectors and
we can only measure the |1c, 1d⟩ by having a coincidence count. The |2c, 0d⟩ and
|0c, 2d⟩ can not be measured.

We now have a tool to link the indistinguishably to the probability to measure
a coincidence. This can be used in a experimental scenario where we have losses
in the system and a unknown indistinguishability between two photons. We use
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Figure 2.15: (a) Relation between the Q-parameter for indistinguishability and
the probability to measure a coincidence between output c and d (green) and to
measure a twofold on c or d (magenta). The more indistinguishable the photons
are, the less coincidence will be measured. (b) The coincidence probability for
photons with an arbitrary linewidths and a maximum Q-parameter of 0.9. The
Q-parameter is approximated by a Lorentzian with a FWHM of 0.5 a.u. .

the principle of changing the time delay between the two photons to make them
fully distinguishable and then change it to the best indistinguishability as possible.
The probability to measure a coincidence can not be directly deduced due to the
losses in the setup, but we can measure the coincidence count rate depending on
the time delay. When the time delay is set to have fully distinguishable photons,
the measured coincidence count rate can be used to normalise to the 50% proba-
bility of measuring a coincidence. After that the time delay is varied resulting in a
point where the coincidence rate is minimised. Applying the normalisation results
in the probability of a coincidence at that time delay, which can be translated to
the Q-parameter.

The indistinguishability dependency on the delay is Lorentzian in this type of
setup since we make a convolution of two exponential decays. Taking an exam-
ple of Q = 0.9 and a Lorentzian Full width Half Maximum (FWHM) of 0.5τ , the
expected outcome of such an experiment is shown in Fig. 2.15 (b).

Experiments normally show the HOM-visibility (VHOM ), which is VHOM = 1 −
Cmin/Cmax where Cmin and Cmax are the lowest and highest measured coinci-
dence rates. The HOM visibility is related to the Q parameter via VHOM = Q2

since VHOM = 1 − 2Pcoin,min and Pcoin,min = 1 −Q2/2 where Pcoin,min is the lowest
probability to measure a coincidence.

2.3.4 Rate equation modelling
The last section is related to the source efficiency (Sec. 2.3.1) and the second
order correlation function (Sec. 2.3.2). This is about rate equations, which is a
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Chapter 2. Theoretical background

tool to calculate the source efficiency and the g(2)(τ) based on an N -level system
with known pumping and decay rates. This requires some assumptions which are
typically fulfilled in general situations. The first assumption is that there are no
Markovian processes, thus we can map every effect onto a state in the quantum
dot. Secondly we assume that the probability to emit a photon is directly related
to the population of the excited state.

The modelling is set up via coupled differential equation, where every state is a
node in the differential equation and the rates are coupling parameters. We follow
the case of a three level system, where we assume a ground state (ng), an exci-
ton state (ne) and an aboveband state (na). This quantum dot is excited from the
ground state to the aboveband state, relaxes into the exciton state and then radia-
tively decays into the ground state. Figure 2.16 shows a schematic of this model
representing the 3 states and 3 rates. The differential equation is set as

ṅa =− γaena + γgang

ṅe =− γegne + γaena (2.30)
ṅg =− γgang + γegne

where ṅ is the population change of this state, n is the population of this state
and γ is the rate between two the states denoted in the subscript. Solving this
system can be done via matrix calculation in the form ofṅgṅe

ṅa

 =

−γga γeg 0
0 −γeg γae
γga 0 −γae

ngne
na

 . (2.31)

The eigenvalues of the matrix are the time constants in the differential solution,
and the eigenvectors are the vectorial values. The outcome of a differential equa-
tion has a constant for every term, which can be determined from the initial con-
dition. This is commonly, ngne

na

 (t = 0) =

1
0
0

 .

This assumes that all the population is initially in the ground state. The initial
condition has no effect on the calculation of the source efficiency but will have an
effect on the g(2)(τ). We look at the steady state condition (t = ∞) to find the
source efficiency depending on the excitation power. This efficiency is the popula-
tion in the excited state (ne). Doing this result in

ne(t 7→ ∞) =
γgaγae

γgaγeg + γgaγae + γegγae

=
γae

γeg + γae

γga
γga +

γaeγeg
γae+γeg

. (2.32)
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Figure 2.16: Three level system used in the example for the rate equation mod-
elling. The 3 states and 3 rates are shown in the model.

γae and γeg are constant since they are the relaxation time from the aboveband
state to the exciton state and the decay from the exciton to the ground state. The
pumping is given by γga, which depends on the laser power (P ). The steady state
solution of the probability to be in the excited state can be written as a depen-
dency of the pumping power via

ne(P ) = η0

(
P

P + Psat

)
, (2.33)

where η0 is the steady state efficiency and Psat is the saturation power. This equa-
tion shows that the saturation behaviour follows a logistic function. In an experi-
mental setup is the count rate measured which allows to determine the saturation
power by measuring the count rate depending on excitation power. The efficiency
η0 is now exchanged for the measured count rate since these two are directly re-
lated to each other. The measured count rate then follows

IQD(P ) = I0

(
P

P + Psat

)
, (2.34)

where I0 is the maximum measured count rate.

A quantum dot has many states that do not all decay radiatively, which are called
dark states. When an excited quantum dot is in such a dark state, it can not de-
cay resulting in no photons generated. If the lifetime of such a dark state is longer
than the repetition of the excitation, the dark state shows periods of time where a
photon can not be emitted. This results in photon bunching on the timescales of
the lifetime of a dark state. This bunching results in an enhanced g(2)(τ) where it
is possible to obtain g(2)(τ ̸= 0) > 0. This can be calculated with rate equation
modelling, since it is effectively an extra state in the model with a population and
lifetime.
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The g(2)(τ) can be extracted from the rate equation model by evaluating the pop-
ulation of the excited state over time. The population shows the probability to
emit a photon after a time t, where t = 0 is the moment when the laser is turned
onto the quantum dot. When t → ∞ the emission from the quantum dot is as-
sumed uncorrelated to the starting time and should have a g(2) = 1. If ne(t) ̸=
ne(∞), that the probability to obtain a photon at time t is either higher or lower
than when it is random. This is equal to how the g(2)(τ) operates, resulting in
[139] (p. 334)

g(2)(τ) =
ne(t = τ)

ne(t 7→ ∞)
. (2.35)

This procedure only extracts the second order correlation function from a simple
model and does not actually calculate the auto-correlation. Calculation the auto-
correlation would require the full master equation.

Current calculations assumed a weak electric field (low laser power), but can be
extended to a strong electric field. A strong electric field induces coherence be-
tween the ground state and the excited state. To describe this with the same type
of modelling, coherence states have to be introduced to describe the coherence.
The states used in the calculation are now the equations of motion for the den-
sity matrix, which results in the optical Bloch equations for a two level emitter
[140] (p.178). These are still a set of linear differential equations as earlier in this
section, but the difference is that they have complex numbers. This is however not
a limitation to the solving process of the system of equations, since the only re-
quirement is that the system of equations is linear. This makes the rate equation
modelling a strong tool to calculate source efficiencies since it can be expanded to
coherent system, as long as the equation of motion are a set of linear differential
equations.

2.4 Parametric down conversion sources
Most of this chapter focuses on single photon generation from quantum dot sources.
Another commonly used process is Spontaneous Parametric Down Conversion
(SPDC), which is based on a non-linear susceptibility. The susceptibility (χ) is
the relation between the polarisation of a material and the electric field. Most ma-
terials are considered to be linear yielding a relation between the polarisation and
electric field of P̃ (t) = ϵ0χ

(1)Ẽ(t), where P̃ (t) is the polarisation, ϵ0 is the permit-
tivity, Ẽ(t) is the time dependent electric field and χ(1) is the linear susceptibility
[141] (p. 2). A non linear material has a susceptibility acting to the electric field
to a power bigger than one, which adds terms to the polarisation via [141] (p.2)
[142] (p.876)

P̃ (t) =ϵ0

[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t)

]
(2.36)

≡P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t),
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where χ(2) and χ(3) are the second and third order susceptibility. Linear materials
are considered to have a non-linear susceptibility significantly small so that it can
be negligible.

For non-linear materials the polarisation can be written in a linear and a non-
linear term P̃ = P̃

(1)
+ P̃

NL [141] (p.72) The wave equation has to be fulfilled
for every ωn, resulting in [141] (p.73)

−∇2Ẽn +
ϵ(1)(ωn)

c2
∂2Ẽn

∂t2
= − 1

ϵ0c2
∂2P̃

NL
n

∂t2
(2.37)

where c is the speed of light and ϵ(1) the linear relative permittivity.

The non-linear element in equation 2.37 allows the mixing of different frequencies
to generate light with new frequencies. The number of waves allowed to be mixed
depend on the order of non-linearities that is sustained by the material where a
material with significant χ(2) (so called χ(2)-medium) allows for mixing of three
waves and a material with significant χ(3) (so called χ(3)-medium) allows the mix-
ing of four waves.

The conversion of light has to fulfil the law of energy conservation (∆ω = 0)
and the law of momentum conservation (∆k = 0). Different cases of Sponta-
neous Parametric Conversion are shown in Fig. 2.17 with (a) SPDC, (b) Sum Fre-
quency Generation (SFG) and (c) Four wave Mixing (FWM). The relations for
energy conservation and momentum conservation are given below and show that
∆k (∆ω) is the difference between the light pumped in and the light generated.

ωp p, k

ωi i, k

ωs s, k

ωs s, k
ω1 1, k

ω2 2, k

Δk= - -k k kp i s Δk= + -k k k1 2 s

ω1 1, k

ω2 2, k

Δk= + -k k k -k1 2 3 4

ω3 3, k

ω4 4, k

(a) SPDC (b) SFG (c) FWM

Δω=ω -ω-ωp i s Δω=ω +ω -ω1 2 s Δ =ω +ω -ω ω1 2 3 4-ω

Figure 2.17: Schematics for different Spontaneous Parametric Sources with (a)
Spontaneous Parametric Down Conversion (SPDC), (b) Sum Frequency Genera-
tion (SFG) and (c) Four wave Mixing (FWM). SPDC and SFG mixes three waves
and require a χ(2) while FWM mixes four waves and requires a χ(3). The energy
and momentum conservation relations are given for all three cases.
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The conservation of momentum is also called the phase relation and holds for an
infinite long interaction length with the non-linear material. For a material with a
finite size, the phase relation has a conversion efficiency depending on ∆k that is
given by [141] (p.79)

ηconv = sinc2
(
∆kL

2

)
(2.38)

where L is the interaction length of the light with the non-linear medium. This
shows that the conversion efficiency is depending on the phase mismatch following
a sinc-function. There are therefore local maxima for the efficiencies in the phase
relation, so called side lobes. By polling the non-linear material, an extra phase
term can be added to the phase relation. This allows the modification of wave vec-
tors with the maximum conversion efficiency to match the energy of the light.

A common single photon source is the SPDC source which has the phase relation
and energy conservation given in Fig. 2.17 (a). The non-linear crystal is pumped
with a single laser, from which a photon is converted into two other photons called
the signal and idler. The photon properties of the signal and idler are identical in
terms of purity and indistinguishability and can be analysed separately. The in-
distinguishability between different signal (or idler) photons is intrinsically high
due to the phase matching relation and energy conservation. Even the indistin-
guishability across different sources is high due to the engineer-ability of the phase
matching, as long as the same laser is used. The single photon purity is an aspect
that has a larger interest for the SPDC source since the generation of a single and
idler photon has a certain probability per pump pulse. This probability is inde-
pendent from the number of photons that is already generated, allowing the gener-
ation of multiple signal and idler pairs. The output photon state is therefore not a
single photon Fock-state but a thermal-state following the Boltzmann distribution
as [4] (p. 85))

|ψ⟩ =
∞∑
n=0

1

n̄+ 1

(
n̄

n̄+ 1

)n
|n⟩s |n⟩i . (2.39)

where n is the photon number per pulse and n̄ the average photon number per
pulse. The single photon purity is analysed using the second order correlation
function on either the signal or idler emission. If the source is operated in a pulsed
mode with narrow temporal pulses and if the pumping power is in a low squeez-
ing limit (Small generation probability), the second order correlation function on
the signal (or idler) photon g(2)(0) can be estimated from the ratio of probabilities
[137]

g(2)(0) =
ρc

ρs1ρs2
=

C
FT

s1
FT

· s2FT
=
FT · C
s1 · s2

, (2.40)

where ρc, ρs1 and ρs2 are the probability to measure a single or coincidence with a
HBT setup (figure 2.13). These probabilities can be transformed via ρc = C/FT ,
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ρs1 = s1/FT and ρs2 = s/FT where C, s1 and s2 are the measured coincidence and
single rates and FT the excitation rate (triggers).

Since the approximation only works with small generation probabilities (ηg ≪ 1),
we can calculate what g(2)(0) is. First we have to calculate the detection rates on
a single detector of the HBT-setup which is

sD =Frep

∞∑
n=1

ηng [1− (1− ηD)
n]

(
1−

(
1

2

)n)
≈FrepηgηD

2
(2.41)

where D is the output arm number, Frep is the repetition rate of the excitation
laser and ηD is the optical efficiency of the path. The approximation of (ηg ≪ 1)
allows us to only take the term of n = 1 in the summation which results in the
given approximation. The coincidences can be calculated via

C =Frep

∞∑
n=1

n∑
p=0

ηng [1− (1− η1)
p]
[
1− (1− η2)

n−p](n
p

)(
1

2

)n
≈Frep (ηg)

2 η1η2
2

(2.42)

with the same parameters as in the singles. When n = 1 in the summation, the
measured coincidences is zero. The lowest term in the summation that yield a
non-zero output is when n = 2 and the approximation is therefore the n = 2
term in the summation. All higher order term can be neglected because ηg ≪ 1.

The g(2)(0) can now be calculated by using Eq. 2.42 and Eq. 2.41 in Eq. 2.40
knowing that FT = Frep. This yields that the g(2)(0) = 2 for an SPDC source,
meaning that the photons are bunched.

This appears to be different than a quantum dot source as discussed in Sec. 2.3.2,
where the g(2)(0) goes to 0. This difference occurs because the g(2)(0) for a quan-
tum dot is already conditioned on measuring a photon, removing effect from all
the zero-photon states induced by losses. The calculated g(2)(0) = 2 for an SPDC
source is unconditioned and therefore takes all zero-photon states into account. To
calculate the single photon purity of an SPDC source allowing it to be compared
to a quantum dot source, we have to condition the g(2)(0) = 2 on having at least
one photon. This can be done by splitting the signal and idler photon and use one
of them to measure the g(2)(0) while the other is a herald that a photon pair was
generated. This would make the trigger rate FT equal to the photon detection rate
in the herald. The herald rate for the conditional second order correlation function
can be calculated from the single and coincidence rates via FT = s1 + s2 − Cs1s2 .
Inserting this in Eq. 2.40 results in a conditional

g(2,1)(0) = 2ηg − η2g (2.43)
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implying that the conditional single photon purity can be tuned with the genera-
tion rate which is directly linked to the pump power.

To compare the SPDC source to a quantum dot source requires a g(2)(0) that is
conditioned on having a signal and idler photon pair. The conditioned single pho-
ton purity can be tuned with the generation rate inducing a trade-off between
the two. To measure the intrinsic operation of a SPDC source, the unconditioned
g(2)(0) should be measured which goes to g(2)(0) = 2.
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CH. 3
Temporal-to-spatial mode conversion of single photons

Single photon sources are most suitable creating a quantum network due to the
robustness of a photon in carrying information. Applications for single photons
are quantum-information processing [61, 143–146], quantum-cryptography [147–
149] and quantum-simulation [31, 41, 42]. These applications require a single pho-
ton source that deterministically generate indistinguishable photons [43–45]. Sin-
gle photons have many degrees of freedom allowing encoding in as many different
schemes. Two commonly used degrees of freedom are temporal and spatial modes
since this is a natural operation of single photon sources. These sources emit in a
fixed spatial mode in different temporal modes. Since we are interested in gates
operating on different spatial modes, a temporal to spatial mode converter is re-
quired. Another solution to obtain identical photons in different spatial modes is
to use multiple identical quantum dot sources. However, this is a hard task for
quantum dot sources due to inhomogeneous broadening.

This chapter discusses the temporal-to-spatial mode converter (i.e. demultiplexer)
for multi-photon generation, based on [59]. Section 3.1 describes the experimen-
tal setup including the used source (Sec. 3.1.1) and demultiplexer (Sec. 3.1.2). A
theoretical framework to estimate the N-fold coincidence is developed in Sec. 3.2
which takes the setup and source parameters as inputs. The result of this calcu-
lation is compared to the measured coincidence rates in Sec. 3.2.2. This chapter
concludes with an outlook for potential applications in Sec. 3.3.
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3.1 Temporal-to-spatial demultiplexer setup
The principle of a demultiplexer setup is to switch a temporal string of M pho-
tons into M distinct spatial modes. This is illustrated in Fig 3.1 (a) with the spa-
tial mode on the x-axis and the temporal mode on the y-axis. Four photons enter
the demultiplexing setup and are switched according to their temporal mode. The
string of photons entering the demultiplexer are separated by a time ∆t = 1/Frep
with Frep being the repetition rate of the laser exciting the quantum dot. Switch-
ing 1 photon in every mode requires switches operating at Fsw = Frep/M . If the
switches in the demultiplexer are limited by a maximum repetition rate of Fmax <
Fsw, the demultiplexer has to switch more than 1 photon per mode to optimise
the efficiency. Maximising this efficiency results in a total of N .

= Frep/ (Fmax ·M)
number of photons per mode where .

= indicates the increase to the nearest inte-
ger. This is illustrated in 3.1 (b) where the first N photons are switched to mode
1, the (N + 1)th til the 2N th photon are switched to the second mode, and so on.
This principle results in a total switching rate of Fsw = Frep/ (N ·M) ≤ Fmax with
a total number of photons per burst of N ·M .

We build a demultiplexer setup for M = 4 modes with a source operated at Frep =
76.152 MHz. The switches have a maximum operating frequency of Fmax = 1.0 MHz,
resulting in an optimum of N = 20 photons per mode and an effective switching
rate of Fsw = 952 kHz.

The switches used in the demultiplexer operate based on polarisation by actively
switching the polarisation between horizontal and vertical. This rotation can be
made using an Electro Optical Modulator (EOM). The switches then consist of
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Figure 3.1: Schematic of the temporal to spatial demultiplexer operation with (a)
the ideal scenario where every individual photon (Red wiggle) is switched to a dif-
ferent spatial mode and (b) the realistic case where the switching rate is limited
multiple photons per mode are switched.
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an EOM and a Polarising Beam Splitter (PBS), which reflects or transmits light
based on the polarisation. Every set of EOM with PBS added to the demulti-
plexer creates an extra spatial mode, requiring 3 sets to create 4 spatial modes.
The temporal matching of photons is done by adding delay fibres after the separa-
tion into distinct spatial modes.

The complete scheme for the demultiplexing experiment is shown in Fig. 3.2, and
the optical setup for the four demultiplexer is drawn in Fig. B.1 (Appendix B).
The three core sections of the demultiplexer setup are highlighted in Fig. 3.2,
which are: Source, Demultiplexing & Detection and the Electronics. All three sec-
tions will be discussed in detail in the following sections.

FPGA

Source

Laser

Demultiplexer
&

Detection

Electronics

Cryostat

EOM

BS 90:10 (T:R)

PBS

SNSPD

Fibre

Fibre coupler

Spectral filter

Photo detector

Electrical amplifier

Timetagger

Figure 3.2: Schematic of the demultiplexing experiment with the three core ele-
ments: Source, Demuliplexer & Detection and Electronics. The source is a quan-
tum dot excited with a pulsed laser. Photons are collected and transmitted to the
demultiplexing setup. The switched photons are detected with Superconducting
Nanowire Single Photon Detectors (SNSPDs). Detection events are time-tagged
together with a trigger signal from the FPGA, synchronised to the laser and
EOMs.

3.1.1 Source characterisation
The source used for the demultiplexer experiment is an InAs quantum dot in a
GaAs suspended nanobeam waveguide (Fig. 3.3). The waveguide is 320 nm wide,
160 nm thick, 14.7 µm long and terminated on one side with a photonic crystal
mirror and on the other side with a shallow-etch grating [132]. The waveguide is
designed to confine the emission into a single mode. The photonic crystal mirror
ensures that all emission is directed into a single collection grating. The grating
coupler is optimised to collect the emitted photons into a single mode optical fi-
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bre with a high efficiency. The source has no electrical contacts, resulting that
the quantum dot resonance and the quantum dot charge state cannot be tuned.
The sample containing the source is mounted in a liquid-helium-bath cryostat and
cooled down to 4.2 K.

Characterisation of the source is performed to understand the efficiency and pho-
ton characteristics. The total photon rate is important to understand the 4-fold
coincidence rate after the demultiplexing setup, which affect the operation time of
potential gates after the demultiplexer. The single photon purity is analysed since
it affect the fidelity of potential gates afterwards. The indistinguishability is not
measured since the source has no electrical gates to control charge noise.

Excitation of the quantum dot is performed with a pulsed aboveband laser with
λ = 853 nm and Frep = 76.152 MHz with a pulse width of ≈ 3 ps. The exci-
tation power is actively stabilised using a PID-controller on a predefined selected
polarisation. The polarisation can be changed afterwards with waveplates. The
PID-controller is connected to a power meter and computer allowing to set the
power at a known point in the excitation path. The laser is coupled into the cryo-
stat with a 90 : 10 (transmission:reflection) beamsplitter via the reflection side and
focused on the sample with a high-NA objective. The quantum dot is excited from
the top and the emitted photons are collected through the waveguide via the grat-
ing coupler. The collection fibre is coupled via the transmissive path of the 90 : 10
beamsplitter to minimise photon loss from the splitting of excitation and collec-
tion. The collected light is spectrally filtered afterwards with a tuneable bandpass
filter (∆λ = 0.3 nm).

1 mμ

Figure 3.3: Quantum dot single photon source embedded in a suspended
nanobeam waveguide. A quantum dot (yellow trapezoid), excitation (blue arrow)
and emitted photon (orange wiggle) are schematically indicated.

The first analysis of the source is done on the efficiency and the spectrum, which
is shown in Fig. 3.4. The collected spectrum is shown in (a) with both the filtered
(green) and the unfiltered (purple) spectrum, measured with an excitation power
of 470 nW on the quantum dot. We filter around the emission line with the high-
est measured count rate, which is at λ = 927.3 nm. The emission efficiency of the
source in the desired wavelength range can be determined from the spectrum by
dividing the integrated counts over the total count rate out of the source. This
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yield a preparation efficiency of pe = (37 ± 1.5)%. Analysis of the collected pho-
tons in the desired wavelength range allows the deduction of the bandpass filter
efficiency and the saturation behaviour of the quantum dot. This saturation be-
haviour is plotted in Fig. 3.4 (b) where the collected count rates in the desired
wavelength range is plotted as a function of the excitation power. The saturation
behaviour of both measurements (with and without filter) are fitted with the lo-
gistic function (Eq. 2.34) deduced from the expected saturation behaviour (red
dot-dashed line) and with Eq. 3.1 (solid black line)

IQD(P ) = I0

(
1− e

P
Psat

)
, (3.1)

where I0 is the maximum collected light and Psat is the saturation power.

The data with and without filter are fitted with the same parameters, where the
fit adds filter efficiency (ηF ) for the filtered data. Both equations (logistic Eq. 2.34
and exponential Eq. 3.1) result in the same filter efficiency ηF = (58 ± 2)%,
but the saturation count rate and intermediate behaviour of the two is different.
Figure 3.4 (b) indicates that the logistic function (Eq. 2.34) does not follow the
saturation behaviour of the quantum dot, while it was expected from calculation.
Equation 3.1 was determined empirical for the saturation curve as this was the
equation with the least number of free parameters that followed the behaviour
of the saturation. An explanation of why Eq. 2.34 does not fit comes from the
type of excitation. The quantum dot is excited via aboveband excitation which
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Figure 3.4: Results from the spectral (a) and the saturation (b) measurement.
(a) shows the spectrum before filtering (purple) and after filtering (green) indi-
cating a strong suppression of other excitation lines. The count rate in the desired
wavelength is reduced by the efficiency of the filter. (b) shows the saturation
measurement for the case with (green) and without (purple) filter. There are two
different fits with each three parameters (I0, ηF and Psat), where one curve follows
an exponential curve (black solid) and the other line the logistic function from Eq.
2.34 (red dot-dashed line).
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has multiple decay paths as can be seen by the number of emission lines in Fig.
3.4 (a). The decay rates of all the other states are unknown thus we cannot setup
a rate equation model to analyse the expected saturation behaviour. Since the
complexity from all other states can alter the saturation behaviour, we have to
use a simplified empirical model. This resulted in an exponential saturation be-
haviour as described in Eq. 3.1. Along with the filter efficiency, the fit yields the
saturation power of the quantum dot, Psat = 236 nW and the saturation counts
I0 = 2.6 · 106 photons per seconds.

We analyse the single photon purity via the second order correlation function
(Sec. 2.3.2). The generated photons are inserted in a HBT-setup (Fig. 2.13) and
the photons are time-tagged with a resolution of 4 ps. The quantum dot is ex-
cited at approximately the saturation power (P = 231 nW) yielding the sec-
ond order correlation shown in Fig. 3.5. The photons are time binned together
at time intervals larger than 4-ps the analysis to obtain coincidences between the
two paths at different time intervals. The time binning has to be chosen carefully
to avoid aliasing between the time binning and the repetition rate. The binning
is therefore done at the repetition rate divided by an integer number, Fig. 3.5 (a)
tbin = 1/Frep ≈ 13.1 ns and Fig. 3.5 (b) tbin = 1/ (10 Frep) ≈ 1.31 ns. Since Fig.
3.5 (a) is binned at the repetition rate of the laser, the individual excitation pulses
are not visible. Investigating the g(2)(0), it is visible that the correlation function
is reduced meaning that there are less correlations between the two arms. This
shows that the source emits a single photon per excitation pulse. Since the second
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Figure 3.5: Measured second order correlation function with (a) the long time
scale and (b) the short time scale. The magenta data are processed with a bin-
ning equal to the repetition time of the laser, where the green data are binned
at 10% of the repetition time of the laser. These integer divisions reduces alias-
ing between the binning and the laser repetition. (a) Indicates that there is
no slow blinking of the quantum dot at a time scale of τ < 50 ms. (b) Shows
g(2)(0) = 0.05 ± 0.01 on the data with tbin ≈ 1.31 ns. The asymmetry in the data
is expected to come from correlation noise between the detectors.
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order correlation function in Fig. 3.5 (a) is 1 at the visible timescale range, it can
be concluded that there is no blinking up to a timescale of τblinking > 50 ms [150].
If there was blinking in this time range, it would result in a g(2)(τ) > 1 when τ <
τblinking. A better analysis of the g(2)(0) comes from the analysis at tbin ≈ 1.31 ns,
which is shown in Fig. 3.5 (b) (green line). This resolves the individual excitation
pulses and is normalised to the average peak height at a long time distance (10 to
50 ms). The central peak is nearly diminished and yields a g(2)(0) = 0.05 ± 0.01.
The circles in this plot are the datapoints for the analysis of tbin ≈ 13.1 ns, show-
ing that the peak heights match when τ ̸= 0 and that the peak height is reduced
at τ = 0. The reduction in g(2)(0) due to the decreased bin width is induced by an
offset of τ = 0 in the binning process. The time-bin of τ = 0 is therefore not cen-
tralised around zero, but at a small time offset. When the timestamps at binned
at the repetition rate (tbin ≈ 13.1 ns) and the central bin is not perfectly centred
around τ = 0, the analysed g(2)(0) will be artificially increased. The asymmetry
in both datasets in Fig. 3.5 (b) is assumed to occur from correlation noise of the
detectors, but is expected to have no significant effect on g(2)(0).

To know the photon emission rate of the quantum dot, we have to analyse the
bright state efficiency (ηb) of the quantum dot. Assuming that the decay from the
aboveband to an exciton line and the decay to the bright/dark X0 dipole is uncor-
related, the effective dark state can be individual modelled accordingly to [151].
The strong excitation power creates many electron-hole pair, which increases the
probability that out X0 is reached via a bi-exciton decay. The decay rate from a
bi-exciton to a bright/dark exciton is twice the decay rate from a bright/dark ex-
citon to the ground state. This results in a bright state efficiency of ηb = (40 ± 4)%
(See App. A for calculation). The quantum dot emission rate is then Frep pe ηb =
11.4 MHz when excited with a laser at Frep = 76.152 MHz. Knowing the emission
rate, the collection efficiency of the waveguide (β-factor [52]) has to be analysed
to know the photon rate into the waveguide. This is the ratio of the photon emis-
sion rate into the collection mode divided by the total photon emission rate from
the quantum dot. This could not be measured for this specific quantum dot, but
it could be estimated from simulation and other measurements [102, 152] yielding

Exciton line pe 37± 1.5%
Bright state efficiency ηb 40± 4%
Waveguide β 80± 10%
Outcoupler efficiency ηOC 60± 5%
Collection optics T 69± 2%
Spectral filter ηF 58± 2%

Table 3.1: Summary of efficiencies required to calculated the total source effi-
ciency.
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β = (80 ± 10)%. The last items to analyse for the total source efficiency are the
outcoupling from the waveguide through the collection optics. This can be divided
in the mode matching between the outcoupler and collection fibre and the trans-
mission efficiency of the optical components. The mode matching is measured
in [132] as ηoc = (60 ± 5)%. Their sample was fabricated from the same wafer
as our sample, allowing us to assume the same efficiency. The transmission effi-
ciency of the collection optics is measured as T = (69 ± 2)%. All the efficiencies
required to calculate the source efficiency are summarised in Tab. 3.1, and yield a
source efficiency of ηS = peηbβηocTηF = (2.84 ± 0.54)%.

The source efficiency can be compared to the results of the power series, where we
had an efficiency of η = ηF I0/Frep = 1.98%. This is lower than the source ef-
ficiency since η includes the transport and detection efficiency. The coupling to
the detector was done via the demultiplexer setup due to spatial limitations. All
switches were turned off resulting in all the photons travelling through the same
path. to obtain the total detection rate, the source efficiency has to be multi-
plied with the fibre efficiency (ηfibre = (92 ± 2)%), demultiplexer transmittance
(ηm,sw = (84 ± 2)%), and detector efficiency (ηdet = (88 ± 1)%). Multiplying
these three efficiencies with the source efficiency yield η = (1.9 ± 0.4)% meaning
that the calculated and measured count rates are within each-other error margin.
The efficiency of these three elements are discussed later on, but shows that we
understand the losses in the setup.

3.1.2 Operation of the demultiplexer
The demultiplexer transmission used in Sec. 3.1.1 is when we turn off all switches.
Due to the different paths, every mode has a different transmission, which are
η1 = 84%, η2 = 84%, η3 = 86% and η4 = 88%. Beside the spatial losses, there
is a loss incorporated from the switching, which is given by the extinction ratio of
the switching (1 : 100) and the losses of the EOM and PBS (98.4%), resulting in
an effective switching efficiency of ηsw = (97 ± 1)%. The fibre efficiency from Sec.
3.1.1 is the fibre transporting the photons from the source to the demultiplexer.
This fibre is 30 meter long due to the physical distance and has a measured effi-
ciency of ηfibre = (92 ± 2)%. The detector efficiency consists of the transmission
from the fibre between the demultiplexer and detector, and the detection efficiency
of the detector. This fibre has a transport efficiency of ≈ 94% and the detectors
are specified to have an efficiency of > 95%. The connection between the fibre and
the detector is made with a splice with an estimated efficiency of ≈ 98% resulting
in a total detection efficiency ηdet = (88± 1)%.

The last aspect of the demultiplexer to discuss is the control of the EOMs and
the time-tagging. The EOMs used are Eksma Optics Ultrafast Pulse Pickers made
from 5 mm wide KTP-crystal. They are operated as half wave plates by applying
a voltage of 2.0 ∼ 2.5 kV across the crystals. The voltage is applied in pulses at a
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maximum repetition rate of 1 MHz (952 kHz in the experiment) with a duty cycle
of 27.5%. The duty cycle is slightly more than 25% since this also accommodates
the rise and fall time of 6.6 ns.

The triggering of the EOMs is controlled using a Field Programmable Gate Ar-
ray (FPGA). An FPGA consists of many logic gates where interconnections can
be programmed, allowing fast operation of reconfigurable functions. One of the
logic blocks on the FPGA is a Phase Locked Loop (PLL), which is referenced to
the trigger signal from the pulsed excitation laser. The trigger signal from the
laser is connected via a 30 meter long BNC cable to the FPGA. The FPGA has
four outputs with a frequency divided by the PLL of Fout = Fin/ (M ·N). This
frequency matches the operation frequency of the demultiplexer. All four outputs
consist of a TTL pulse where every consecutive channel is 90 degree out of phase
with the previous one (ϕm = 90◦ · (m− 1)). The first pulse is sent to the time tag-
ger to record the timestamp of when the switching sequence starts, and the other
three are sent to the three different EOMs to trigger their switching.

3.2 Expectation of four fold detection rates
Having information of all the efficiencies, a prediction of the coincidence rates can
be made. Measuring a coincidence means that all modes should contain a photon
that is detected. ρnm is the detection probability of a photon in temporal mode n
and spatial mode m. The probability to measure a four fold coincidence at tem-
poral mode n is η(n)4F = ρ

(n)
1 ρ

(n)
2 ρ

(n)
3 ρ

(n)
4 . This is simplified to η(n)4F =

(
ρ(n)

)4 if all
spatial modes have the same detection probability and η4F = (ρ)4 if there is no
temporal structure in detection probability.

3.2.1 General expectation for M-fold demultiplexer
The demultiplexer used in this setup has both temporal and spatial structure in
the detection probability. The spatial dependency results from losses in the dif-
ferent modes, and the temporal structure results from the deadtime of the detec-
tors. The deadtime is longer than the time between two consecutive photons but
shorter than the time between consecutive bursts of photons, resulting in a full re-
set of detection probabilities between these bursts. This simplifies the calculation
as we can treat a single burst independently.

The probability to detect a photon can be split up in the different dependencies
by ρnm = ηmηnηi with ηm and ηn as the spatial and temporal dependencies, and
ηi is the intrinsic efficiency. Every photon has a lifetime (τlt), but this is signifi-
cantly smaller than the interval between photons (∆t) and the detector deadtime
(τdead). Every photon is therefore considered as a δ-function in time giving a dis-
crete string for ηn(n) and ρnm. The time response in the detection probability is
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assumed to be purely affected by the deadtime of the single photon detector with
a certain recovery profile for the efficiency. Two common detectors are Avalanche
Photodetector (APD) and a Superconducting Nanowire Single Photon Detector
(SNSPD) which have typical recovery profiles of a heavy-side function and ex-
ponential function, respectively. The maximum efficiency of ηn is assumed to be
100% since static losses are written in the intrinsic efficiency (ηi). Therefore we
can see ηn as the time response function of the detector with the current photon
number (n) and the photon number of the last detection event (Q) as input vari-
ables. This allows ηn to be written as a time response function of ηn = TP,Qm with
P as the current photon number (P = n). The time response function T is de-
pendent on the spatial mode number m since different detectors can have different
deadtimes. If Q = 0, there has not yet been a detection event in the photon burst
so TP,Q=0

m = 1.

Having all the required element to calculate ρnm we can calculate this for different
values of n. The first scenario is when n = 1 where the detection probability is

ρn=1
m = ηi,mT

1,0
m , (3.2)

with ηi,m = ηiηm.

When n = 1, the last time-bin where a detection event could have happened is
Q = 0, meaning it is far before the photon arrives. The detection efficiency is
then the intrinsic efficiency multiplied with the spatial mode efficiency. Extending
this to n > 1 requires summing over all probability to obtain a detection event
multiplied with the probabilities of when the last detection event happened. The
probability of a specific last detection event is the probability of detecting a pho-
ton at that specific time while not detecting a photon at any earlier time, and can
be written as

n−1∏
ϵ=Q

(1− ρϵm) ρ
Q−1
m

with Q as the last occurred detection event. This allows us to write out the detec-
tion probability for n = 2 and n = 3 resulting in

ρn=2
m =

(
1− ρ1m

)
ηi,mT

2,0
m + ρ1mηi,mT

2,1
m ;

ρn=3
m =

(
1− ρ1m

) (
1− ρ2m

)
ηi,mT

3,0
m + ρ1m

(
1− ρ2m

)
ηi,mT

3,1
m + ρ2mηi,mT

3,2
m .

This shows that the probability for a detection event for a specific Q can be writ-
ten as

ηi,m

n−1∏
ϵ=Q+1

(1− ρϵm) ρ
Q
mT

n,Q
m

since we look for a detection at time n with a last occurred detection at time Q.
To obtain the total probability for a detection event, we have to sum over all prob-
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abilities of the last detection event, resulting in †

ρnm = ηi,m

n−1∑
k=0

(
n−1∏
ϵ=k+1

(1− ρϵm) ρ
k
mT

n,k
m

)
. (3.3)

Writing out for n = 1 to n = 4 yields

ρn=1
m =ηi,m ρ0mT

1,0
m (3.4)

ρn=2
m =ηi,m

[(
1− ρ1m

)
ρ0mT

2,0
m + ρ1mT

2,1
m

]
ρn=3
m =ηi,m

[(
1− ρ1m

) (
1− ρ2m

)
ρ0mT

3,0
m +

(
1− ρ2m

)
ρ1mT

3,1
m + ρ2mT

3,2
m

]
ρn=4
m =ηi,m

[(
1− ρ1m

) (
1− ρ2m

) (
1− ρ3m

)
ρ0mT

4,0
m +(

1− ρ2m
) (

1− ρ3m
)
ρ1mT

4,1
m +

(
1− ρ3m

)
ρ2mT

4,2
m + ρ3mT

4,3
m

]
,

and shows that there is a ρ0m which can be interpreted as the time response value
at the beginning of a burst. Typically this is considered to be ρ0m = 1 since the
time between two bursts is larger than the deadtime, but this can be put lower
if there would be a physical reason that the detector is not at the maximum effi-
ciency at the beginning of a burst.

The next step to calculate the expected count rate is to define a function for the
time response function. The detectors used in the experiment have an exponen-
tial recovery where the dead time is determined by the time the detector needs to
reach back 95% of the original efficiency. The time response function can then be
written as

TP,Qm =1 −→Q = 0 (3.5)

TP,Qm =1− e−
P−Q
τnorm −→Q ̸= 0

where τnorm is the normalised dead time and can be written as

τnorm =
τdeadFrep
−ln(0.05)

. (3.6)

The expected number of M-fold coincidences can be calculated by multiplying the
detection probabilities of all spatial modes at a fixed time with each other, and
sum this over all time-bins. The expected number of coincidences within a single
burst is then

CMF =

N∑
n=1

M∏
m=1

ρnm. (3.7)

Since the rate of bursts can be written by Fb = Frep
M ·N , the total M-fold coincidence

rate is given by

FMF =
Frep
M ·N

N∑
n=1

M∏
m=1

ρnm. (3.8)

†∏<ϵ
ϵ = 1
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The given equations allows us to predict the measured four-fold coincidence rate
out of the demultiplexer setup. The efficiencies used for the calculation are given
in Sec. 3.1.1 and Sec. 3.1.2 and implemented as ηi,m = ηSηfibreηmηswηdet. The
deadtime is assumed to be equal for every detector and τdead = 70 ns. This results
in a 4-fold coincidence rate of F4F = 2.5± 1.9 Hz.

3.2.2 Results from demultiplexing experiment
An input source rate Fin = FrepηSηfibre is defined to analyse the performance
of the demultiplexer independent from the source. The input source rate can be
modified by changing the efficiency of the source or by changing the excitation
power as can be seen from the saturation behaviour (Fig. 3.4 (b)).

The four fold coincidence rate is measured for different input source rates rang-
ing from 400 kHz to 1.7 MHz. The measurements with an input source rate be-
low 800 kHz are performed with a non-optimised collection efficiency (T in Tab.
3.1) where the variation occurs due to different steps in optimising the source rate.
The measurements with a source rate of more than 800 kHz are performed with
the optimised efficiencies as in Tab. 3.1 but with different excitation powers. The
results are shown in figure 3.6 where the four-fold coincidences depending on the
input source rate is shown. The circles indicate the measured coincidence rate and
the solid line indicates the expected coincidence rate from the calculation without
any fitting parameter. The measured coincidence rate ranges from 4.3 ± 0.2 mHz
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Figure 3.6: Calculated (Black solid line) and measured (Blue dots) four fold coin-
cidence rates depending on the input source rate. Calculations are compared to a
passive demultiplexer (ηsw = 1/M = 0.25, green dotted line) or when we measured
with APDs (ηdet = 30%, magenta dash-dotted line). Results from [57] and [58]
are compared to the calculation with APDs since their results are measured with
APDs.
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(15 per hour) with 0.41 MHz input source rate to 1.05± 0.05 Hz with 1.7 MHz in-
put source rate. The calculated four fold coincidence rates for these input source
rates are respectively 3.8 mHz and 1.12 Hz. This shows that the expected and
measured coincidence rates matches closely, taking into account that the calcu-
lation does not contain any fitting parameter.

To compare out results to the results from other configurations and research groups,
we also calculated the expected four fold coincidence rates with different parame-
ters. The first comparison is made to a fully passive demultiplexer, assuming the
same source and detectors as in our measurement. This would result in a switch-
ing efficiency of ηsw = 1/M = 0.25 and is plotted in Fig. 3.6 as the dotted line.
This indicate that our active demultiplexing setup has an improvement of 5 or-
ders of magnitude in four fold coincidence rate. The second comparison is if we
had measured with APDs instead of SNSPDs as done in [57, 58]. This allows us to
compare our coincidence rates to theirs and can be calculated by using ηdet = 0.3.
This calculation is shown in Fig. 3.6 as the dash-dotted line. Reference [57] and
[58] are shown in Fig. 3.6 as a red star and blue triangle, respectively. Reference
[57] has an input source rate of 25.6 MHz with a detected four fold coincidence
rate of 151 Hz. This includes a high efficient circuit (ηc > 95%), and correcting for
this results in a four fold rate of F4F < 200 Hz. Our demultiplexer would yield a
four fold coincidence rate of F4f ≈ 460 Hz using the same type of detectors as [57],
indicating that our demultiplexer is more efficient. Using SNSPDs with a input
source rate of 25.6 MHz would yield a four fold coincidence rate of F4f ≈ 38 kHz.
Reference [58] uses a different technique of switching by fabricating the demulti-
plexer on-chip. They predict a four fold coincidence rate of F4f = 0.18 mHz with
a source rate of 2 MHz. Their coincidence rate is low since the on-chip ηm < 0.1,
which severely limits the demultiplexer.

3.2.3 Expansion of demultiplexer setup
The current demultiplexing setup convert the temporal modes to four spatial modes.
The design of the demultiplexer allows for a trivial expansion to more spatial modes.
This can be done by placing an electrical resonant EOM before the first electrical
broadband EOM and drive it with an oscillate at FRep/2. This switches consec-
utive photons between horizontal and vertical polarisation. Delaying every first
photon with one time bin and route it back parallel to the original spatial mode
creates a second spatial mode temporal multiplexed with the second photon. Both
photons are then switched into the chain of broadband EOMs. A drawing of the
expansion to an 8-fold demultiplexer is drawn in Fig. B.2 (Appendix B). This sec-
ond spatial mode travels parallel to the first spatial mode through the broadband
EOMs, resulting that every broadband EOM creates two extra modes.

Another method to expand the number of spatial modes is be chaining more broad-
band EOMs, creating an extra mode per EOM. This can still be coupled with the
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Figure 3.7: Predictions of coincidence rates for different expansions of the demul-
tiplexer. (a) Expected M -fold coincidence rate with an increase of the number of
spatial modes. The green dots shows the expectations for the source used in this
experiment and the magenta dots shows the expectations if we obtain an input
source count rate of 15 MHz. (b) Expected 8-fold coincidence rate depending in
the input source count rate, assuming the expansion a resonant EOM.

resonant EOM, creating two extra modes per broadband EOM. With the given
calculations and measured efficiencies, we can predict the M -fold coincidence rate
for different expansions. We assume to have no resonant EOM if M ≤ 7, and
we have a resonant EOM if M ≥ 8 where M can only take even integer values.
We assume that the efficiency of a spatial mode reduces with 2% for every EOM
in the path. The expected M -fold coincidences are shown in Fig. 3.7 (a) where
the green dots are the expectation with our current source and the magenta dots
the expectation if we increase the input source count to 15 MHz. The blue dotted
line indicate a coincidence rate of 1 per hour. This shows that the current source
can scale up to a 6-photon demultiplexer with a coincidence rate of a few per day.
When the source is improved to yield 15 MHz of input counts we can scale realis-
tically to a 10 photon demultiplexer.

The original design of the demultiplexer was to obtain 8 spatial modes, so we
analyse the required input source counts to yield reasonable coincidence rates.
Figure 3.7 (b) shows the expected coincidence rate for an 8-fold demultiplexer de-
pending on the input source counts, where the blue line indicate a count rate of 1
per hour. This shows that an input source count of 5 MHz is required to obtain a
few 8-fold coincidences per day. To increase this coincidence rate to at least 1 Hz
would require an input source count rate of almost 17 MHz.
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3.3 Conclusion and outlook
This chapter demonstrates a highly efficient demultiplexer setup for multi-photon
generation which can exploit the quantum advantage for quantum information
processing and simulation [146, 153, 154].. The used source consists of a quan-
tum dot in a planar structure with a grating coupler for top-collection of light. We
measured a g(2)(0) = 0.05 ± 0.01 at P = Psat and a maximum count route out of
the source of I0 = 2.6 MHz.

We built demultiplexer that switches the photons over 4 spatial modes. We made
a fit parameter free model to predict the measured M -fold coincidence rate, which
can be used for a demultiplexer switching into M number of spatial modes. We
measured the efficiencies of our demultiplexer and used the model to predict the
measured 4-fold coincidences depending on the input count rate from the source.
We performed the measurement and varied the input count rate by adding/removing
loss elements in the single photon source and obtained an input count rate ranging
from 400 kHz up to 1.7 MHz. The largest measured coincidence rate is F4F 1.05 ±
0.05 Hz, and all measured coincidence rates fits with the model. Comparing our
demultiplexer with other built demultiplexers shows that we have a higher effi-
ciency, since we can obtain more than twice the coincidence rate of others.

Future work exist of expanding the demultiplexer to a higher number of spatial
modes. The design of the current setup was based on a trivial expansion to a
larger number of modes. We focused on doubling the number of modes with one
extra EOM, resulting in an 8-fold demultiplexed source. We showed that we need
an input source count of at least 5 MHz to have a few 8-fold coincidences per day,
and need an input source count of 17 MHz to obtain at least 1 Hz of 8-fold co-
incidences. A direction to increase the source efficiency is to use electrical gated
samples and perform resonant excitation [55, 57].

A general future direction for demultiplexed single photon sources would require
demultiplexing on chip [58]. Recent work demonstrated on chip switches [155],
which can route towards fully integrated devices for multi photon experiments.
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CH. 4
Characterisation of Single Photon Sources

Single photon sources can be constructed in different manners with most com-
monly the quantum dot (QD) and spontaneous parametric down conversion
(SPDC) sources. Both sources generate photons with distinct characteristics de-
pending on the configuration of the source. This chapter focuses on characterising
specific aspects of these sources. First we discuss a quantum dot single photon
sources (Sec. 4.1) embedded in two different nanostructures fabricated in a sample
with a diode structure. The first structure consists of a nanobeam waveguide and
the second of a photonic crystal waveguide. In the nanobeam waveguide we inves-
tigate the effect of the waveguide width on the spectral and electrical properties
of the quantum dot. As seen in Sec. 2.2.1 are the lifetime and spectral width re-
lated to each other. We measure the spectral properties and the electrical proper-
ties and link that to possible noise sources. The second part of the quantum dots
investigates a quantum dot embedded in a photonic crystal waveguide. Section
2.2.1 shows that the decay rate of a quantum dot can be altered by changing the
density of states. This can be done with a photonic crystal waveguide, where the
quantum dot resonance is close to the photonic bandedge. When the quantum dot
is tuned onto the bandedge, the lifetime should decrease and the spectral width
should increase.

Section 4.2 describes an SPDC source, which was set up during an external project
in the Clarendon Laboratory, department of physics at the University of Oxford.
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This describes the process of setting up an SPDC and characterising the source.
The characterisation showed unexpected behaviour which is investigated. The fo-
cus of this section is on what type of noise sources could have influenced the mea-
surements and how these can be solved. The last part of this chapter (Sec. 4.3)
compares quantum dot sources and SPDC sources with each other in terms of
operation for applications. Both sources have distinct characteristics which can
be beneficial for different applications, which requires the knowledge on how they
compare to each other.

4.1 Characterisation of quantum dots
This section describes the characterisation of quantum dots embedded in planar
photonic nanostructures. First we study the effect of the width of a nanobeam
waveguide (Sec. 2.2.2) on the spectral and electrical properties of a quantum dot.
The effect of the width is studied for two type of excitons, the neutral exciton
(X0) and the negatively charged exciton (X−). The waveguides are fabricated in
a sample with a P-I-N-I-N -diode that allows electrical control of the resonance
frequencies.

After the nanobeam waveguide we discuss the measurements on photonic crystal
waveguides fabricated in a sample with a P-I-N -diode. We investigate the effect
of the coupling of the quantum dot to the photonic crystal waveguide while the
quantum dot resonance is tuned into the bandgap. When the resonance shifts into
the bandedge the number of decay channels increases, which decreases the lifetime
and increases the linewidth of the resonance.

4.1.1 Characterisation of quantum dots in waveguides
The fabrication of nanostructures around quantum dots influence the spectral
properties of the excitons as discussed in Sec. 2.2.2. Changing the design param-
eters of a structure changes the spectral properties since the modes in the waveg-
uide change. There are many design parameters that can be investigated, but we
focus on the width of a nanobeam waveguide since this should have a direct link
to the coupling between the exciton and the guided modes of the waveguide. The
quantum dots are grown via the Stranski-Krastanov method [76] resulting in spa-
tial and spectral randomly distributed quantum dots. The waveguides are fabri-
cated at fixed locations on the sample resulting in a random number of quantum
dots per waveguide, at random lateral (perpendicular to waveguide direction) and
longitudinal (parallel to waveguide direction) positions.

This random distribution of quantum dots adds extra measurement steps before
the spectral properties can be measured, which are to find the longitudinal posi-
tion and spectral resonances. This is done by using a CW laser at ~860 nm that
excited quantum dot in the wetting layer, enabling emission from the resonances.
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Figure 4.1: (a) Schematic of the setup used for the characterisation of the quan-
tum dot emitters. Light is coupled in via a fibre and reflected on a beamsplitter
towards the sample. Extracted photons are transmitted through the beamsplitter
and measured by either a spectrometer or an SNSPD. The input path contains
two extra beamsplitters allowing white-light illumination via an LED and allows
us to view the sample with a CCD-camera. (b) Grey scale image of a nanobeam
waveguide with a designed width of 500 nm while illuminated via white light. The
colours are images of the quantum dots via aboveband excitation indicating the
spatial position of the quantum dots. The colours differentiate the quantum dots
and do not represent the emission wavelength.

The focus of this laser is scanned along the longitudinal direction and the collected
emission is sent via the waveguide to a spectrometer and the top emission is col-
lected by a CCD camera. The spectrometer identifies the resonance wavelength
and the CCD camera the position in the waveguide.

The setup performing the measurements is schematically shown in Fig. 4.1 (a).
The input laser is inserted via a fibre, transmitted through two beamsplitters and
then reflected by a beamsplitter towards the sample. The two other beamsplit-
ters are used to insert a white light source onto the sample and to image the sam-
ple on a CCD. Light out from the sample is transmitted on the top beamsplitter
and is send to either a spectrometer or an SNSPD (superconducting nanowire sin-
gle photon detector), depending on the type of measurement. The sample used
in the nanobeam measurements is shown in Fig. 4.1 (b) which shows one of the
nanobeam waveguides that is measured on, illuminated via white light. The white
light image is overlayed with images captured by the CCD of the excitation of dif-
ferent quantum dots, where every colour represent a different quantum dot. The
waveguide shown is a waveguide of 500 nm wide and labelled as 2Aw05QD3. The
measurement process is described by following a quantum dot numbered as QD3
located in this waveguide.
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Voltage tuning
When the spatial location of a quantum dot is found we can measure the coarse
spectral properties of the quantum dot. This is measured by exciting the quan-
tum dot with the same CW laser (~860 nm, wetting layer) while we measure the
emitted light on a spectrometer. This is done at different applied bias potentials
from which an emission map is obtained showing the emission depending on the
potential and emission wavelength. An example of these maps is shown in Fig. 4.2
which is measured on a QD3 in the 500 nm wide waveguide (2Aw05QD3). Darker
areas shows emission from the quantum dot, which is normalised to the maximum
measured value. The emission map shows different emission lines which are iden-
tified as different charge state of the quantum dot based on [69]. The identified
lines are the X+ (939.7 nm), X0 (939.9 nm), X− (943.4 nm) and X2− hybridised
with the wetting layer (944.1 nm). There are more emission lines visible which
are other states of the exciton, but they have a significant lower probability to be
populated. The exact wavelength of all these states do vary from quantum dot to
quantum dot [50, 76, 156–158], but the relative distances between the exciton lines
are as expected for this type of sample [69]. The effect that different charge states
occur at different applied voltages is due to the shift in the bandedge [69, 158–
160], allowing the capture of a different number of charges in the quantum dot.

Knowing the coarse spectral properties of the quantum dot, resonance transmis-

Figure 4.2: Photoluminescence map showing normalised emission intensity de-
pending on the applied voltage and emission wavelength. The quantum dot is
excited with a laser emitting at ~860 nm and the collected light is measured on
a spectrometer. This dot shows typical features for a quantum dot in a P-I-N-
I-N structure with an X0 around 939.9 nm, X− around 943.4 nm, an expected
X+ at 939.7 nm and an expected X2− hybridising with the wetting layer around
944.1 nm.
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Figure 4.3: Voltage-frequency map of (a) X− and (b) X0 showing the normalised
transmission reduction depending on the laser frequency detuning from ν0 and
applied bias voltage. Step sizes are 200 µV and 40 MHz.

sion (Sec. 2.2.3) is used to measure the spectral properties with a higher resolu-
tion. This finer resolution cannot be measured with the 860 nm laser and spec-
trometer due to the limited resolution of the spectrometer (~25 pm; 8.3 to 9.3 GHz).
Another effect is that the 860 nm laser alter the resonance wavelength of the quan-
tum dot due to charges induced in the environment around the quantum dot. The
measurement with the 860 nm laser is however an accurate enough indication of
the wavelength and voltage of the resonance. The first RT-measurement is to mea-
sure the charge plateau of the exciton, which is a trace of the resonance frequency
with a varying bias voltage. This plateau is measured with an attenuated tune-
able CW-laser coupled into the waveguide via one of the grating couplers. The
other grating couples the light into a fibre towards a single photon detector. The
transmitted photons are counted, and should reduce when the quantum dot and
laser are on resonance since it is a RT-measurement. The frequency and voltage
are scanned across a region where we expect the resonance to appear based on the
measurements with the 860 nm laser. The frequency is stepped in 40 MHz and the
voltage with 200 µV. The measured count rate is normalised according to Eq. 2.16
and we plot the depth of the normalised transmission (1 − Tnorm) in Fig. 4.3. We
did this for two exciton lines, the X− (Fig. 4.3 (a)) and the X0 (Fig. 4.3 (b)).
Both excitons show a tuning over tens of millivolt with a range of tens of giga-
hertz. The transmission dip appears to be less prominent for the X0, which will be
discussed later on.

Measuring Linewidths
Measuring the charge plateau of the exciton allows us to identify the centre of it.
This is where the resonance interaction is the strongest, resulting in the deepest
RT-dip. Around this point is a more fine scan performed at the voltage where the
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Figure 4.4: Normalised RT data with (a) X− data and a Fano fit (b) X0 data
and a Gaussian fit. (a) Shows a measurement without telegraph noise, allow-
ing a fit to the Fano-shape function to determine the linewidth and transmission
dip visibility. (b) Shows a measurement with telegraph noise fitted by a Gaus-
sian function since we assume random uncorrelated noise. The fit is however an
improper estimation of the linewidth and transmission dip visibility.

transmission dip should be the deepest. The laser frequency is then swept in steps
of 5 MHz across the resonance to obtain the linewidth and transmission dip of the
exciton. The transmission dip normalisation is done by tuning the quantum dot in
and out of resonance with the voltage. The results of these scans on the example
quantum dot are given in Fig. 4.4 with (a) X− and (b) X0.

The two graphs in Fig. 4.4 shows the cause of the difference in prominence be-
tween voltage-frequency-maps of Fig. 4.3. The X− has a Fano lineshape (Fig
4.4 (a)) while the X0 is affected by telegraph noise [161, 162] (figure 4.4 (b)),
which hides the lineshape. This telegraph noise is caused by uncontrolled fluc-
tuation in the resonance frequency of the quantum dot by random uncorrelated
noise at a timescale of the integration time. Figure 4.5 shows schematically how
the noise influences the measurement. The left panel illustrate the quantum dot
resonance profile (dotted line) and the laser linewidth (solid line, not to scale).
If there would be no noise, the quantum dot resonance is fixed and the laser fre-
quency is swept over the quantum dot profile. The overlap of the two is an indica-
tion of their interaction which means a count rate decrease in RT. The measured
profile is the convolution of the laser profile and the quantum dot profile. Since
the laser linewidth is a few orders of magnitude smaller than the profile of the
quantum dot and smaller than the frequency step made in the measurement, the
measured profile will correspond to the quantum dot. When random uncorrelated
noise is added to the system (Fig. 4.5 (left panel, dot-dashed lines)), the resonance
frequency shifts in the timescale of the noise (right panel, solid curve). The effect
of the noise in the measurements depends on the timescale of the noise [49, 163],
with three possibilities. The noise is either faster, slower or same order as the in-
tegration time. If the noise is a lot slower than the integration time, the resonance
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Figure 4.5: Schematic of the influence of random uncorrelated noise on the mea-
sured quantum dot profile. The quantum dot (purple dotted line) has a fre-
quency profile which is scanned by a laser with a few order of magnitude narrower
linewidth (green solid line). When noise acts on the quantum dot, the resonance
changes with the noise in a random uncorrelated pattern.

remains nearly stable over the time of a single measurement and we measure the
linewidth of the quantum dot. If we measure the linewidth later on again, the
width remains equal but the centre frequency is shifted. When the noise is a lot
faster than the integration time, the noise will be averaged out per scanned fre-
quency. The measured profile is therefore a convolution between the quantum dot
profile and the noise profile [102, 163]. The last possibility is when the noise has
the same timescale. The resonance frequency will be different for every datapoint
on the profile measurement, but it remains on that resonance long enough to not
be averaged out for a single datapoint. Every datapoint is a measurement with
a different resonance frequency randomised by the noise, resulting in telegraph
noise. The width of this noise is similar to the linewidth of the convolution of the
quantum dot line with the noise.

4.1.2 Effect of WG width variation on QD resonance
The aim is to measure the effect of the width of the nanobeam on the quantum
dot resonance frequency and the voltage tuning. We measured on nanobeam waveg-
uides with designed widths ranging from 350 nm to 1000 nm. The actual widths
are approximately 10 to 30 nm smaller due to over etching of the sample during
fabrication. Different widths of the waveguide are expected to have different cou-
pling between the waveguide and the quantum dot. The stronger the coupling,
the lower the lifetimes and therefore larger linewidths. The change in width can
also have an influence on the electrical tuning of the resonance, which can play
a role on the effect of noise influences. The range of waveguide widths we mea-
sured on arises from practical limitations. The 1000 nm wide waveguides were the
widest fabricated waveguides, and they are multimode at that width. The min-
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imum width of 300 nm arises from the measurements, since we could not find
quantum dots at which we could perform RT measurements in waveguides nar-
rower than 300 nm.

The variation of the nanobeam width has an effect on the effective refractive in-
dex for different modes [102], and changes the number of allowed guided modes.
Nanobeam waveguides with a width below 200 nm are single mode, from 200 to
400 nm the waveguide has 2 modes but the second mode is still weak and can usu-
ally be neglected. From 400 nm and wider the waveguides support more than one
guided mode and are considered multimode. The change in number of modes has
an effect since the quantum dot can couple to different modes, which affect the β-
factor [52] for the individual modes. Furthermore is the grating coupler optimised
to couple the first order even mode into a single mode fibre. This determines in
which waveguide mode the laser is coupled into the waveguide, resulting in the
measurement of the coupling between that waveguide mode and the quantum dot.

Since the goal is to measure the effect of the waveguide width on the quantum
dot resonance, multiple quantum dots per waveguide have to be measured to ob-
tain statistics. Due to the growth of the quantum dots and the fabrication of the
nanostructures, there is no control on how many quantum dots a waveguide con-
tains and where in the waveguide these are located. The longitudinal position has
a negligible effect on the coupling between quantum dot and waveguide, but the
lateral location has a significant effect on it [152, 164]. Multiple quantum dots
were found per waveguide, but not all could be measured due to experimental
limitations. A part of the constraints comes from the limited frequency range of
the used resonant laser which can scan from 914 nm to 980 nm (327.9 THz to
305.8 THz) and a part because the quantum dot could not be found back in res-
onance transmission after the measurement with the 860 nm laser. There were a
few occasions where the quantum dot resonance could not be found back when
switching from the charge plateau map to the frequency scan. The linewidths
are therefore determined with the charge plateau scan as a voltage linewidth and
then transformed to a frequency linewidth based on the Stark parameters. An-
other advantage of this process is that a sweep in voltage is faster than a sweep
in frequency, reducing the telegraph noise (Fig. 4.5). This process allowed us to
measure on 14 quantum dots on which we measured all the X− excitons and 8 X0

excitons. We did not measure on X+ or X2− excitons.

Results of varying waveguide width
The effect of the nanobeam width on the linewidth and the transmission dip vis-
ibility is investigated first. The dependencies are shown in Fig. 4.6 with (a) the
transmission dip visibility and (b) the linewidth depending on the waveguide width.
There are no error bars shown to avoid cluttering, but the transmission dip has
a typical error of 5 to 10 percent-points and the linewidth of 60 MHz (X−) and
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Figure 4.6: (a) Transmission dip visibility depending on nanobeam width, (b)
linewidth depending on nanobeam width and (c) transmission dip visibility de-
pending on linewidth for X0 and X−. Green upward pointing triangles is mea-
sured on the X0 and the magenta downward pointing triangles on the X−. The
darker magenta downward pointing triangles mark the X− lines of the same dot
as on which the X0 was measured.

120 MHz (X0). The green upward pointing triangle are the measured X0 reso-
nances and the magenta downward pointing triangles the X− resonances where
the dark magenta triangles indicate the X− excitons on which we also measured
the X0. None of these two graphs indicate a clear dependency based on the waveg-
uide width, but the X0 tends to have a larger transmission dip visibility than the
X− while both have a comparable linewidth. From these graphs we can not con-
clude any dependency between the width of the waveguide and the coupling or the
linewidth.

The difference in transmission dip visibility can be explained with the polarisa-
tion since the X0 couples to linear polarised light and the X− to circular polarised
light. We aimed for quantum dots located central in the longitudinal direction,
where the waveguide mode is dominantly linear polarised. This allows the X0 to
couple perfectly while the X− can couple at best only 50% [50, 164]. The trans-
mission dip of the X− should therefore be at best only 50%.

The dependency between the transmission dip visibility and the resonance linewidth
is also investigated. It is expected that the transmission dip visibility decreases if
the linewidth is broadened by noise [102]. Figure 4.6 (c) shows the dependency
of the transmission dip visibility on the linewidth and shows a faint decrease in
transmission dip visibility for larger linewidths on the X0. This can be a false
trend due to the lack of datapoints in this region, and we can not claim a clear
relation from this data. Further investigation on this is required to confirm or de-
cline the relation. This plot does however show that the X0 has a larger transmis-
sion dip visibility than the X−.
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Figure 4.7: Linear stark shift parameter depending on the waveguide width.
Green upward pointing triangles is measured on the X0 and the magenta down-
ward pointing triangles on the X−. The darker magenta downward pointing
triangles mark the X− lines of the same dot as on which the X0 was measured.

As last we investigate the Stark parameter depending on the waveguide width
which is shown in Fig. 4.7 with the X0 (green upward pointing triangles) and X−

(magenta downward pointing triangles). All the measured resonances had linear
relation and no clear quadratic term was measured. There can however be a small
effect from the quadratic Stark parameter which entered in the error margins.
From the 500 nm to 800 nm range there appears to be a relation where a wider
waveguide has a larger Stark shift parameter. This is however not compatible with
the data from the 350 nm and 1000 nm waveguides. This can be explained for the
1000 nm wide nanobeam with the lateral location of the quantum dot which de-
termines the dominant mode that is coupling to, affecting the stark shift param-
eter. The 350 nm waveguide has only a single datapoint per exciton and might
therefore be an outlier. This effect can be investigated further when nanostruc-
tures are deterministically fabricated around quantum dots [165, 166].

X0 versus X−

Performing the measurements the X0 appeared to have more often telegraph noise
than the X−, and the X0 was typically harder to find back in a next measurement
than the X−. This induces the idea that there is some structural difference be-
tween the X0 and the X−. This difference might come from the extra electron in
the quantum dot for a X−, which would mean that the difference is charge re-
lated. We compare the 3 properties we measured for quantum dots on which we
could measure both the X0 ans the X−. This resulted in a total of 8 quantum
dots we could use for the comparison. Figure 4.8 compares (a) the transmission
dip visibility, (b) the linewidths and (c) the Stark shift parameter of the X− ver-
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Figure 4.8: Comparison between X0 and X− on the eight quantum dots where
both excitons could be measured. This graph compares (a) transmission dip
visibility, (b) linewidth and (c) stark parameter. The colour of the datapoints
indicate the quantum dot on which was measured.

sus the X0. The datapoints have unique colours, but the same colour across dif-
ferent graphs indicate that it is measured on the same quantum dot. The dashed
lines indicate where the X− and X0 would be equal for that property. Figure 4.8
(a) confirms that the X− has a lower transmission dip visibility than the X0, and
Fig. 4.8 (b) shows that the linewidths are comparable. The error bars in Fig 4.8
(b) are smaller for the X−, indicating that there is less noise on the data. This is
related to the telegraph noise (Fig. 4.5), which was seen more often on the X0.
Figure 4.8 (c) shows that the Stark parameter for the X0 is consistently larger
than for the X−, but they are correlated since the quantum dots with a larger
Stark parameter on the X0 also have a larger Stark parameter on the X−. This
indicate that electrical or charge noise can be the noise source for the linewidths
because the X0 is more sensitive to the electrical environment and has more noise.

All given expectations require further investigation to confirm or deny any hy-
pothesis made in this analysis since the data sets are not big enough to make a
deterministic statement. Further work might include deterministic locations of
nanostructures around quantum dots to avoid influences from the lateral position
of the quantum dot in the waveguide.

4.1.3 Purcell enhancement in photonic crystal waveguides
Quantum dots in a photonic crystal waveguide couple to the waveguide depending
on the Local Density of States (LDoS) [97, 167]. The waveguide creates a guided
mode in the bandgap to which a quantum dot in the waveguide can couple. The
frequency edges of the guided mode have an increased LDoS meaning that the
coupling between a quantum dot and the waveguide is enhanced in that regime.
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Obtaining electrical control over the resonance frequency of a quantum allows to
tune an exciton in and out of this bandedge. This results in a change of coupling
depending on the bias voltage, translating into a decay rate into the waveguide
that can be electrically tuned. Tuning this decay rate allows for a quantum dot
source with a tuneable β-factor, or to tune a quantum dot into a localised mode.

The idea of the measurement is illustrated in Fig. 4.9 which shows the simulation
of the Purcell enhancement depending on the resonance frequency scaled to the
lattice parameter a. The simulation is performed for r = a/3, which is different
from our experiment since we have r ≈ /2. This results in a rescaling of the fre-
quency axis and Purcell enhancement, but the fundamentals remain equal. The
red arrow indicate the direction we tune the quantum dot resonance. The reso-
nance is in a guided mode with low Purcell enhancement and is tuned across the
bandedge where the Purcell enhancement increases. The dashed lines are indica-
tors used in the paper for other referencing.

The sample used in this experiment has a P-I-N -diode structure to allow electri-
cal tuning of the quantum dot resonance. The type of diode structure changed
compared to the nanobeam waveguides since the P-I-N -diode is found to have a
larger tuning range of the resonance frequency. The first step towards a tuneable
source is to find a quantum dot that can be electrically tuned into the bandedge
and measure the lifetime and spectral linewidth depending on the voltage. The
bandedge of the photonic crystal has to be measured to, which is done by per-
forming a transmission measurement on the waveguide with a tuneable CW laser.
When the transmission drops below 10% of the maximum transmitted light we ob-
tained the cutoff wavelength of the bandedge. Next is to find a quantum dot that
is spatially located in the photonic crystal waveguide and emits photons with a
wavelength near the bandedge. This is done with the same procedure as in Sec.
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Figure 4.9: Adapted from [50]. Example of the Purcell enhancement depending
on emission frequency. The frequency axis is scaled with the lattice parameter
a of the photonic crystal lattice. The frequency axis is shifted compared to our
structure since this is simulated for r = 3/a while we have r = a/2. The red arrow
shows the tuning direction of the resonance of our quantum dot.
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4.1.1 by scanning he longitudinal location of the laser spot and tune the bias volt-
age when a quantum dot is found to measure if the quantum dot can be tuned
into the bandedge.

The quantum dot used in this measurement is found in a waveguide with a de-
signed hole radius of r = 72 nm with a lattice parameter of a = 248 nm. Simu-
lations show a cutoff wavelength of λc = 1036 nm, but pre-calibrated fabrication
processes results in a cutoff wavelength in the range of λc = 910 − 960 nm. The
measured cutoff wavelength is 934.9 ± 0.3 nm and the found quantum dot could
be electrically tuned from 934.8 nm to 936.2 nm, which is through the cutoff wave-
length. Since this quantum dot fulfils the requirement to be electrically tuneable
across the bandedge (through the cutoff wavelength), we measured linewidths and
lifetime of this quantum dot.

Purcell enhanced lifetime and linewidth
We measure the lifetime and linewidth of the quantum dot as it is tuned across
the photonic crystal bandedge. The lifetimes are measured via pulsed p-shell exci-
tation (Sec. 2.1.4) from the top, with a 3 ps pulse at a 72.6 MHz repetition rate.
The emission is collected through the waveguide and spectrally filtered via a grat-
ing filter (±0.3 nm bandwidth) tuned to the desired emission wavelength. The
voltage and excitation wavelength are optimised for maximum detection count
rate. The detected counts are recorded with a timestamp (4 ps resolution) of ar-
rival relative to the latest excitation pulse. A histogram is made of all these ar-
rival times, from which the lifetime can be calculated by the exponential decay in
the histogram. The linewidths are measured via a resonance fluorescence measure-
ment (Sec. 2.2.3) with a CW laser. The laser in the collection path is filtered out
by polarisation and the collected photons are sent to the detector from which the
count rates are determined.

The first measurements consisted of measuring the lifetime at three different emis-
sion wavelengths by tuning the applied voltage, which are 935.0 nm (381 mV),
935.5 nm (100 mV) and 936.0 nm (−60 mV). Increasing the wavelength pushes
the excitation into the bandedge which increases the number of decay channels
and should result in a decreased lifetime and increased linewidths. Figure 4.10
shows the lifetime and linewidth measurements performed on this quantum dot
with (a-c) the lifetime and (d-f) the linewidths. The emission wavelength are (a,d)
935.0 nm, (b,e) 935.5 nm and (c,f) 936.0 nm. The top graphs show the measure-
ment data (green dots) and fit (purple line) where the lifetimes are fitted with an
exponential convoluted with the Instrument Response Function (IRF), and the
linewidths are fitted with a Fano function. The bottom graph shows the residue
between the data and the fit, to determine the quality of the fits. The only re-
lation shown in the residue is that the larger the exact number, the larger the
residue. A histogram of the residue is made (bottom right) with a Gaussian fit
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Figure 4.10: (a-c) Lifetime and (d-f) linewidth measurements for different volt-
ages with resonance wavelengths at (a,d) 935.0 nm, (b,e) 935.5 nm and (c,f)
936.0 nm. Top graphs show the measurement results (green dots) and the fit
(solid purple line), where the linewidths are fitted with a Fano-lineshape. The bot-
tom graphs shows an analysis of the residual with left the residue between the fit
and data over time ((d-f) frequency), and right a histogram of the residue (green
dots) with a Gaussian fit (solid purple line).

fixed around zero showing that the residue follows a Gaussian distribution. From
this we conclude that the fits represents the data.

The results from the lifetime and linewidth measurements are shown in Fig. 4.10
and summarised in Tab. 4.1. This shows that the measured lifetime decreases
while the resonance is tuned into the bandedge, indicating that we Purcell en-
hance the coupling. The lifetime limited linewidth can be calculated from this life-
time (γlim = 1

2πτlt
) and is shown in the third column of Tab. 4.1. The measured

linewidths are shown in the last column and are at least a factor 4 larger than the
lifetime limited linewidth. The measured linewidths at an emission of 935.0 nm
and 935.5 nm are also equal to each other. This indicate that we cannot measure
the Purcell enhancement from the measured linewidths. Since the Fano-fits to the
linewidths resulted, the broadening can be due to pure-dephasing [50, 168, 169].
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λ [nm] τlt [ps] Γlim [GHz] Γ [GHz]
935.0 603± 20 0.264± 0.006 2.47± 0.14

935.5 288± 30 0.552± 0.016 2.41± 0.38

936.0 206± 22 0.772± 0.023 4.35± 0.46

Table 4.1: Measured lifetimes and linewidths on varying emission wavelengths.
The measured linewidths are at least a factor 4 larger than the lifetime limited
linewidths.

In conclusion, we measured a decreased lifetime while the quantum dot resonance
is electrically tuned across the bandedge. The expected increase in lifetime limited
linewidth could not be measured since all measured linewidths were more than a
factor 4 larger than lifetime limited linewidth as can been seen in Tab. 4.1. This
experiment requires more study and can greatly benefit from deterministic fabrica-
tion of nanostructures around quantum dots.

4.2 Building a SPDC source
Quantum dots embedded in nanostructures are not the only single photon sources.
Another common single photon source is the SPDC source (Sec. 2.4). A tem-
porary project was performed at the Clarendon Laboratory in the department
of physics at the University of Oxford to allow a study on these type of sources.
This allows the understanding of these source and the comparison between SPDC
sources and quantum dot single photon sources. The project consisted of setting
up and characterise an SPDC source for a quantum walk experiment [170]. This
section focus on the experiments perform to set-up the SPDC source and to trace
down possible problems.

The source described in this section is a type-II SPDC source made with a Period-
ically Poled KTP-crystal (PPKTP) with a poling period designed to convert into
co-linear photons. The goal is to use the source for quantum walks with multiple
photons where both signal and idler can be simultaneously used as an input pho-
ton. These photons should therefore overlap in spectrum.

The crystal is pumped with a pulsed laser at 80 MHz and a wavelength of 775 nm
which bandwidth is tuned with a high-pass and low-pass filter. A fraction of the
laser is tapped into a fibre towards a spectrometer to record the spectrum. The
non-tapped light is filtered by a spatial filter and focused on the PPKTP. The PP-
KTP has a poling period of 46.205 µm to ensure phase matching of co-linear spec-
tral overlapping photons at 1550 nm. The setup is designed for type-II conversion,
resulting in photons with orthogonal polarisation which are split by a PBS. The
laser is filtered out with a low pass filter, and the separated photons are individu-
ally filtered with bandpass filters. The setup is schematically drawn in Fig. 4.11.
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Figure 4.11: Schematic of the SPDC source. The pump beam consists of a
80 MHz pulsed laser with a central wavelength of 775 nm. The bandwidth of
the laser can be tuned with a high-pass and low-pass filter followed by a spatial
filter for mode matching. The laser is focused on a Periodically Poled KTP-crystal
(PPKTP) where the poling is phase matched to obtain co-linear photons. The
polarisation of the laser is setup for type-II conversion allowing the photons to be
split with a PBS. The pump laser is filtered out with a low-pass filter.

The spectral properties are defined by the crystal and pump laser and will be
briefly discussed. The focus is on the single photon properties from the source,
focused on the unconditioned second order correlation function.

4.2.1 Optimising spectral properties
The spectral properties of the generated photons occur from the pump laser and
the poling period of the crystal since these bind the energy conservation and phase
matching. Both relations are simulated for the crystal described in Fig. 4.11, with
varying linewidth for the pump laser with a centre wavelength at 775 nm. The
phase relation is independent of the pump linewidth, but depend on the central
wavelength and the non-linear crystal. Figure 4.12 (a) shows this phase relation
for a pump laser at 775 nm with on the axis the signal and idler photon wave-
length and the plotted map is the generation probability of that specific signal-
idler pair. This shows the local maximum as given by Eq. 2.38. The non-zero
linewidths of the pump laser results in a non-zero linewidths for the generated
photons, as shown in Fig. 4.12 (b,top). This shows the energy conservation for
a pump laser at 775 nm with a non-zero FWHM of the linewidth (given above the
diagram). The plotted map is the probability distribution of generating a signal-
idler pair with a certain wavelength relation.

Combining the two relation result in a Joint Spectral Intensity (JSI) giving the
intensity relation between the signal and idler photons (Fig. 4.12 (b,bottom)).
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Figure 4.12: (a) Phase relation for a PPKTP crystal with a poling period of
46.205 µm. This shows the local maximum occurring in the phase matching (Eq.
2.38) (b) Top: Energy conservation relation a pump laser with three different
linewidths of the pump with a central wavelength of 775 nm. Bottom: Joint Spec-
tral Intensity (JSI) for the three different FWHM settings.

The JSI indicates that there is a limited wavelength range for the signal and idler
photons and it visualises if there is a correlation between the wavelengths of the
signal and idler. This correlation is visualised by a non circular distribution. For
example, if we look at the case where the pump laser has a FWHM of 0.44 nm,
the idler photon decrease in wavelength when the signal photon increases in wave-
length. This allows us to obtain information about one of the photons by mea-
suring the other photon. This correlation between the signal and idler can be de-
scribed via the Schmidt number (K) [137, 171] which indicates an effective num-
ber of modes. In an ideal case the Schmidt number K = 1, resulting in a single
effective mode and would yield no correlation between signal and idler photons.
When the Schmidt number increases, the number of effective modes increases and
the correlation in the JSI increases as well. This Schmidt number can be directly
related to the expected unconditional g(2)(0) as [171]

g(2)(0) = 1 +
1

K
. (4.1)

The Schmidt number is calculated from the same simulations as in Fig. 4.12 for a
range of linewidths. The resulting g(2)(0) depending on the linewidth is shown in
Fig. 4.13 which shows that a maximum in g(2)(0) exist at a finite linewidth. This
optimum is reached at a linewidth FWHM of 1.03 nm resulting in a maximum
g(2)(0) = 1.83. The markers in Fig. 4.13 indicate the linewidths for which the en-
ergy conservation and the JSI are shown in Fig. 4.12 (b).
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Figure 4.13: Calculated g(2)(0) depending on the pump laser linewidth. This
graph indicates a maximum g(2)(0) = 1.83 with a FWHM of 1.03 nm. The mark-
ers on the graph indicate the three linewidths of which the energy relation and JSI
are shown in Fig. 4.12.

4.2.2 Optimising built SPDC source
Knowing what to expect from the source, we can build and optimise the source
setup. The first step is to tune the linewidth of the pump laser to optimised un-
conditional g(2)(0), which is expected to be at a pump linewidth of 1.03 nm with
g(2)(0) −→ 1.83. The linewidth is manually controlled by angular tuning of the
high and low pass filter in the spectral filtering section (Fig. 4.12). We measured
at linewidths ranging from ∼ 0.7 nm to ∼ 1.5 nm which spans over the expected
optimum of ≈ 1.03 nm. The coincidence and single rates are measured and used
to calculate the unconditional second order correlation function from Sec. 2.4.

The results are shown in Fig. 4.14, indicating a second order correlation g(2)(0) >
2. Random noise processes would result in a g(2)(0) −→ 1, which is opposite from
what is measured. The noise introducing this enhanced g(2)(0) must therefore be
a correlated noise. Four different possible noise sources which would increase the
g(2)(0) were investigated. These noise sources are: 1. Other order generation pro-
cesses 2. Mixing of g(2)(0) and g(1,1)(0) 3. Detection crosstalk 4. Time varying
power

The first two points are related to each other, but have different origins. Point
2 means that in a single generation event, the signal and idler photons are not
fully separated resulting correlation measurements between the signal and idler
photons, which is the g(1,1)(0). Point 1 indicate processes such as four wave mix-
ing and Type-I or Type-0 SPDC processes. Both processes could generate photon
pairs that are not fully separated by the PBS which would result again in a sam-
pling from the g(1,1)(0). The scenario of four-wave mixing process is simulated by
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Figure 4.14: The measured g(2)(0) depending on the linewidth of the input laser
as measured on the spectrometer. The maximum value that g(2)(0) is able to
reach in a noiseless environment is g(2)(0) = 2. The measured value is higher,
indicating that correlated noise is present in the setup.

a postdoc which showed that this process should not occur. If four wave mixing
would occur, the photons would have a significant different wavelength that are
blocked by the band-pass filters. Type-I and Type-0 are also simulated for the sys-
tem and are predict to not occur. If these would still occur, the photons would
have the same polarisation meaning. This makes it impossible for them to split
on the PBS and result in measuring the g(1,1)(0), but it can only be measured
in either the signal or the idler path. The measurement shows that both have a
g(2)(0) > 2 which means that either both processes occur or the noise has a differ-
ent source.

Mixing of g(2)(0) and g(1,1)(0)

The second point is the mixing of g(2)(0) and g(1,1)(0). When the signal and idler
photon are imperfectly split by the PBS, the measurements samples from the
g(1,1)(0) which would increase the measured correlation [171, 172]. This increase
occurs since g(1,1)(0) = 3 + 1/n̄ [172], which goes to infinity for low generation
probabilities since n̄ ∝ ηg. The mixing can have two origins which are both re-
lated to the PBS. The first origin is that the polarisation axis from the crystal and
not perfectly projected on the PBS, and the second origin is that the PBS can has
imperfect separation of the polarizations. The imperfect projection of the polari-
sation axes is tested by adding a half wave plate between the crystal and the PBS
and rotate this to minimise the coincident counts. This resulted in a wave plate
angle of 0◦ and a g(2)(0) that remained equal to what it was before. The imperfect
splitting was tested by adding a polarizer with an extinction of 1 : 100.000 in the
signal and idler path to suppress the photons with a wrong polarisation. This ini-
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tially reduced the second order correlation by g(2)(0) = 1.8 ± 0.1. These polarizers
were removed after the confirmation expecting the g(2)(0) to raise back to a high
value † , but the g(2)(0) remained initially on 1.8 ± 0.1. This makes the splitting
unlikely to be the cause of the increased g(2)(0). This shows that the mixing of
g(2)(0) and g(1,1)(0) is unlikely but not fully excluded as the source for the unrea-
sonably high g(2)(0).

Detection crosstalk
Crosstalk in the detection scheme would result in a larger g(2)(0) since it induces
correlation that does not exist. This crosstalk can come from either the single
photon detectors or from the detection electronics. All cases of crosstalk occur
from the induction of an electrical pulse from a different electrical pulse. This ex-
tra pulse is then measured by the detection electronics, which results in a correla-
tion event.

Crosstalk induced by the detection electronics is tested by having cable connected
to one channel, while the other channel has no connection (no electrical load).
The connected channel is detected to the single photon detector, which receives a
stream of photons. If the crosstalk is induced by the detection box, this test setup
should result in correlation between the two channels. Crosstalk in the single pho-
ton detector is tested by connecting both detectors to a channel on the detection
electronics and sent a stream of photons to only one detector. If there is crosstalk
somewhere on the detection of the photons, a correlation between the two chan-
nels should arise. None of these tests showed correlation between the channels,
removing crosstalk as a possible source for the increased g(2)(0).

Time varying power
The last noise source we investigated is a time varying pump power. When the
crystal is pumped with a time varying power, the generation rate fluctuates along
with the pump power. This introduces correlation on the timescale of the fluctu-
ation and therefore increases the non-time resolved g(2)(0). The expected areas
where power fluctuations can occur are the laser itself, the spectral filtering setup
and the spatial filter setup. Fluctuations in the laser itself can happen due to in-
ternal process in the laser itself resulting in an unstable output power. Fluctua-
tions around the spectral filter setup can occur when the pump laser had spectral
fluctuations. These fluctuations result in a different power in the spectral region
that is transmitted inducing power fluctuations. The spatial filter induces power
fluctuations when the output laser beam is not spatially stable or if any optics
mount is mechanically unstable.

†The notation of high value is used since between every step the measured g(2)(0) varied be-
tween 100 and 5.0 in an inexplicable manner.
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Power fluctuations induced by the spectral or spatial filter are measured by plac-
ing a beamtap before the filter where the tapped signal is measured and corre-
lated to the power measured after the filter. Doing this for the spectral filter also
yielded the stability of the power out of the laser with the power meter on the
beamtap. Performing this measurement on the spectral filter resulted in no cor-
relation or power fluctuation.

The measurement over the spatial filter is shown in Fig. 4.15 which is a measure-
ment of 108 minutes with a sampling rate of 1 Hz. The measurement results are
normalised to the average power to compare the fluctuations between the detec-
tors. Figure 4.15 (a) shows the normalised measured powers where both mea-
surements are smoothed with a nine-point averaging window to reduce fast noise.
This shows that the power before the filter has a small fluctuation without a clear
trend. The power after the filter shows a larger fluctuation and an indication that
there is a fluctuations on the minute timescale, inducing that there is a long time
fluctuation in spatial stability. Figure 4.15 (b) shows the measured data where the
averaged measurement is divided by the non-averaged data, for both power me-
ters. The amplitude of the ratio is a measure of how strong of an fluctuation there
is at a sub-9 seconds time scale. This amplitude is binned in a histogram, which
is fitted to a Gaussian distribution since we assume random noise. The standard
deviation (σ) of this Gaussian fit is a measure of the amplitude of the fluctuation.
The histogram and Gaussian fits are shown in the right panel of Fig. 4.15 (b) and
show a σb = 0.22% and σa = 0.53% where b indicates before the filter and a after
the filter.
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Figure 4.15: Result from measuring the power before and after the spatial filter
over a period of 108 minutes with a 1 Hz sampling rate. Measured powers are
normalised to the average power to compare the before and after data. (a) Before
and after data smoothed with a nine-point averaging window to reduce fast noise.
The data after the filter appears to fluctuate more at a certain time interval. (b)
Division of the raw data with the nine-point averaged data. The fluctuation is an
indication of the amplitude of the fluctuation in a non-resolvable time scale.
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Measuring the power before and after the spatial filter indicate that the beam is
not spatially stable on sub-Hertz and sup-Hertz timescales. The sub-Hertz fluc-
tuations can come from mechanical oscillations in the optomechanics or from any
macroscopic mechanical element connected to the setup. The faster fluctuations
are expected to come from the laser itself from the dithering function from the
laser. The dithering allows the laser to mode-lock itself in a changing environ-
ment, but the output laser beam obtains a small pointing rotation over time. This
typically happens at speed ranging from 30 Hz to 60 Hz. Since the laser is coupled
free-space to the photon source, this effect is first visible on the spatial filter.

This could unfortunately not be investigated further due to a fixed time limit for
the external project. The dithering of the laser could therefore not be confirmed
anymore, as well if this could have increased the measured g(2)(0) of the SPDC-
source.

This section showed the set-up of an SPDC source during a temporary project.
The source was designed for type-II conversion with spectrally overlapping co-
linear photons. The g(2)(0) was expected to reach g(2)(0) = 1.83 due to the design
parameters, but the measured g(2)(0) reached values higher than what should oc-
cur (g(2)(0) ≫ 2). This means that there is more correlation in the an individual
path than expected. Different sources of the correlation noise were investigated,
from which the laser dithering and the mixing with a g(1,1)(0) are the most likely
sources. They could however not be experimentally confirmed.

4.3 Comparison SPDC and Quantum Dots
Two different type of single photon sources are characterised with the intention
of using these source for single photon applications. Both sources have intrinsi-
cally different characteristics, which will be compared to each other. The three
core properties we compare are the single photon purity (second order correlation
function), the photon indistinguishability and the single photon generation rate.

Second order correlation
The first property to compare the two sources on is the second order correlation
function, measured via an HBT setup (Sec. 2.3.2). The single photon purity de-
termines the operation fidelity of applications. For a quantum dot is the intrinsic
g(2)(0) = 0, since a single excitation can emit only one photon. This can however
not be measured since any uncorrelated noise will bring the g(2)(0) → 1. How far
closer to 1 depends on the prominence of the noise. When the quantum dot is ex-
cited with a strong laser pulse, it is also possible to obtain multi-photon states due
to coupling between the quantum dot and the strong laser pulse [173]. Different
groups researching report values for the second order correlation measurement.
Notable values consist of g(2)(0) < 0.6% [95] and g(2)(0) = 0.7 ± 0.1% [60]. In
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[95] they measured in a suspended nanobeam waveguide terminated with a taper
for high collection efficiency. The quantum dot was cooled down to 4.2 K and ex-
cited with a quasi-resonant laser. The collected photons were filtered to remove
the phonon sidebands. In [60] they measured on a quantum dot in a micropillar
cavity with a 2 µm diameter cooled down to 4.3 K. The interest of this work be-
comes more clear in the photon indistinguishability.

Since an SPDC has random generation of photon pairs it has to be heralded on
one of the two generated photon to perform deterministic operations. The condi-
tioned second order correlation function for a SPDC source is g(2)(0) = 2ηg (Eq.
2.43) in the approximation that the generation rate is small. This shows that the
SPDC source cannot reach perfect single photons, but it can be tuned to an ar-
bitrary value. An SPDC source is from complexity less sensitive to noise sources
than quantum dots, allowing the tuning of the g(2)(0) to a similar value at the
cost of generation rate.

Indistinguishability of single photons
The next comparison is the indistinguishably of the photons generated by the two
different sources and can be measured with a HOM-setup (Sec. 2.3.3. An ideal
two level emitter would have an indistinguishability between consecutive photons
of VHOM = 100%. When the quantum dot is cooled down to a finite temperature
(T > 0 K), the HOM-visibility is reduced depending on the temperature and con-
finement dimensionality [174]. Noise sources limits the HOM-visibility too since
they can fluctuate a property of one of the photons, causing a partial distinguisha-
bility on the timescale of the noise.

Current state of the art measurements of single photon indistinguishability for
quantum dot sources consist of VHOM = 94 ± 1% (∆t ≈ 13 ns) [95] and VHOM =
94.8% (∆t ≈ 289 ns) VHOM = 93.2% (∆t ≈ 830 ns) VHOM = 92.1 ± 0.5%
(∆t ≈ 14.7 µs) [60]. In [60] was the indistinguishability measured over a long
time scale to ensure that the photons are still indistinguishable for applications
interfering far away photon. The timescale of 830 ns is relevant to the spatial-to-
temporal mode converter from Ch. 3, since the longest timescale of photons their
is ∆t = 60/(76.2 · 106) ≈ 790 ns.

SPDC sources have an intrinsic VHOM = 100% but are also influenced by noise.
An SPDC source has however less noise in the photon generation than the quan-
tum dot resulting in a high indistinguishability between photons from the same
SPDC source. A more interesting metric is the indistinguishability across different
SPDC sources, which arise from the control of fabrication of the crystals. State of
the art result on this is VHOM,n−SPDC = 96.2 ± 1.1% [175], which is in the range
of photons from a single quantum dot source. This results that multiple SPDC
sources can be used for single photon applications while the indistinguishability is
similar to the quantum dot sources. This strategy allows an increase of the photon
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generation rate, which we compromised on for the single photon purity.

Generation rate
The last part to compare the generation rate of single photon of the two sources
with each other. The generation rate is an important factor since multi-photon
experiments depends on an efficient source of single photons to reduce the re-
quired time for a single operation. The generation rate is already hinted at in the
other comparison sections. An ideal two level emitter would emit a single photon
with every excitation pulse resulting in a generation efficiency of 1. This is not
yet measured and state of the art work consist of a generation efficiency of 34%,
since they measure a single photon rate of 25.6 MHz while pumping at 76 MHz
[54]. The second order correlation function they measured is g(2)(0) = 2.7%. An
SPDC that would have the same second order correlation function would have a
maximum generation rate of ηg = 1.3%, which is almost a factor 30 lower than the
generation efficiency of the quantum dot source.

This lack of generation efficiency can be overcome by using multiple SPDC sources
since we discussed that the indistinguishability between SPDC source is similar
to photons from a quantum dot. Multiplexing of these sources is possible since
the herald indicates which SPDC-source generated a photon pair, which allows an
optical circuit to route that SPDC source to the output. If this circuit would be
perfect, 32 SPDC sources with ηg = 1.3% would be required to obtain an effective
ηg = 34%. The same multiplexing can be done with a single SPDC-source, but the
effective output rate will be reduced depending on the number of temporal modes
combined [46, 47]. The herald now notify in which temporal mode the photon pair
was generated allowing a circuit to delay the photon into a predefined temporal
output mode.

There are applications which require the photons to be in separated spatial modes.
This eliminates the requirement of routing all SPDC-sources into a single spatial
mode, while a quantum dot source requires a circuit to split the photons into dif-
ferent spatial modes. A much studies application for multiple SPDC sources is
scattershot BosonSampling [175–178].

This section gave a brief overview of how the SPDC and quantum dot source com-
pare to each other in terms of single photon purity, indistinguishability and gen-
eration rate. It also discusses how the generation rate is affected by the other two
and how to utilise the sources to their strength.
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4.4 Conclusion
This chapter showed the characterisation of two commonly used single photon
sources, a quantum dot embedded in a nanostructure and a Spontaneous Para-
metric Down Conversion source. On the quantum dot we measured the spectral
properties and the Stark-tuning depending on the width of the nanobeam waveg-
uide for the X0 and X− excitons. The two different excitons are compared to
each other afterwards. We showed that there was no dependency visible on the
linewidths or transmission dip for the waveguide widths. However, there appeared
to be a dependency on the Stark-parameter which has to be investigated further.
Comparing the X0 to the X− showed that the X0 has larger transmission dips
while the linewidths remained equal. The X0 is influenced stronger by noise since
this exciton has more frequently linewidths with telegraph noise. This is expected
to be related to charge noise since the X0 has a larger Stark-parameter, which re-
sult in a larger sensitivity for charge noise around the quantum dot.

The second characterisation measurement on the quantum dots consisted of tun-
ing a quantum dot resonance into the bandedge of a photonic crystal waveguide.
This tuning was done by applying a bias voltage that tunes the quantum dot res-
onance from 934.8 nm to 936.2 nm while the cutoff wavelength was measured at
934.9 ± 0.3 nm. We measured the lifetimes at emission wavelengths of 935.0 nm,
935.5 nm and 936.0 nm with the measured lifetimes of 603±20 ps, 288±30 ps and
206± 22 ps respectively. The reduction in lifetime for the resonance is expected by
the Purcell enhancement. The increase in linewidths could unfortunately not be
measured due to pure dephasing and we measured linewidths of 2.47 ± 0.14 GHz,
2.41±0.38 GHz and 4.35±0.46 GHz. The linewidths were at least a factor 4 larger
than the lifetime limited linewidths (264±6 MHz, 552±16 MHz and 772±23 MHz
respectively) and did not consistently widen while being tuned into the bandedge.
Both measurements could be investigated further when nanostructure can be fab-
ricated deterministically around the quantum dots.

The SPDC source consisted of measuring the second order correlation function
of the signal and idler photons, which yielded an unexpected large g(2)(0). The
unconditional second order correlation function for an SPDC source should be
g(2)(0) ≤ 2, meaning we had a noise term inducing correlation. The expected
source of the noise is the laser dithering which rotates the pointing of the output
laser beam, or mixing of the signal and idler photons (g(1,1)(0)). The dithering re-
sults in power fluctuation after a spatial filter inducing correlation on a fixed time
scale. This could not be confirmed as the noise source due to time constraints.
The g(1,1)(0) was tested for, but the results were indecisive.

On the last part we compared a quantum dot source with an SPDC source for
multi photon experiments with the focus on the generation rate, single photon pu-
rity and photon indistinguishability. The generation rate and single photon pu-
rity are tied together for an SPDC source. This source can get an arbitrary small
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g(2)(0) at the cost the of photon generation rate. A quantum dot source has these
two parameters uncoupled, meaning that it can get a near unity generation rate
while photons have a high purity. The efficient generation is not yet measured
above 34% [54] due to limited efficiencies. The single photon purity for a quan-
tum dot is still limited since this is strongly influenced by noise. Due to the rela-
tion between generation rate and single photon purity, it would require 32 SPDC
sources to have a 34% generation probability with the same single photon purity
as [54]. This is a possible technique since SPDC sources have high indistinguisha-
bility between their photons, even across different sources. The indistinguishabil-
ity across SPDC sources is similar to the measured indistinguishability between
photons from a single quantum dot source allowing stacking of SPDC sources to
compensate for the low generation probability.
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Heralded Entanglement Generation

Single photons are investigated as a resource for different quantum protocols due
to the robustness against environmental influences. This makes photons strong
candidates for communication and cryptography, but there are also options for
quantum information processing [20, 43, 48, 61, 143, 179, 180]. Different cryptog-
raphy protocols are investigated such as Quantum Random Number Generators
(QRNG) [41, 147, 181–183] and Quantum Key Distribution (QKD)[32–35, 184–
188]. Examples for quantum information processing exist of BosonSampling (BS)
[26–31, 44, 57, 144, 189, 190] and cluster states [191–193].

The common problem for quantum information processing is the validation of the
results. It is assumed that quantum computation has a processing speed advan-
tage over classical computation [194, 195] for specific calculations. Current tech-
niques to validate these quantum processors is via comparisons to statistical test
[196, 197] or by using an entangled state [198].

Quantum cryptography focus on the encryption of data to avoid an eavesdrop-
per of listening. The first proposals on QKD and QRNG required the trust that
the measurement apparatus worked as promised, making it threat for the data
safety. In QKD this can be overcome by implementing Device Independent QKD
(DIQKD) [148, 199–205], where the user can test if the apparatus worked accord-
ingly. DIQKD uses entangled photon pairs as a resource where the operation can
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be tested via Bells theorem. QRNG requires a method to validate the true ran-
domness of the generated numbers. True randomness does not exists in classical
system since all perceived randomness is due to an inability to predict. Quan-
tum systems have a random nature that can help in the generation of true random
numbers. Current definitions of randomness compares the generated random num-
bers via a specific tests. These tests can exclude only certain types of correlation,
allowing other types of correlation to exist. Excluding correlations with all sta-
tistical test we know does therefore not prove that it is truly random since there
might be a correlation in the numbers that is not tested. It is possible to certify
a QRNG by showing that the random numbers are generated based on quantum
mechanics, which is true random. This can be done via Bells theorem and requires
entangled photons as a source for the QRNG [206].

The above examples show that entanglement is a required resource to ensure that
quantum protocols perform the desired operation. The generated entanglement
has to be deterministic to reduce to possibilities that an eavesdropper gains infor-
mation, or that the random numbers obtain correlations. This poses a problem
since most entanglement generation schemes are probabilistic,resulting in an effec-
tive lower efficiency. This problem is overcome by using a scheme that can herald
the entanglement so the user knows within a certain efficiency that there is an
entangled photon pair. Such a scheme exists in the form of the Heralded Entangle-
ment Gate [179, 207] requiring a four photon input state of which two photons are
entangled and the other two photons are used as a herald.

Chapter 3 showed a demultiplexed four photon source that can be used as in in-
put to generate entanglement with an entanglement gate. This chapter focuses on
the operation of the entanglement gate. First we show how the state evolution of
the photons can be calculated. This is followed with the output state and how we
can herald the output state. Different types of heralding are shown together with
their effect on the output. After the ideal scenario are imperfections added to the
calculations, where we focus on either partial distinguishable photons or a limited
source and setup efficiency.

5.1 Operation of the heralded entanglement gate
This section introduces the operation of the entanglement gate [207], which is con-
structed from passive optical components. A schematic view of the gate is given
in Fig. 5.1 which has four input photons (port A to D). Each path contains a
Half Wave Plate (HWP) to orient the photons into a diagonal polarisation. The
photons in path A and B are interfered on a PBS, just as the photons in paths
C and D. Outputs A’ and D’ are the paths containing the photons heralded into
Bell states. Figure 5.1 shows polarisation analysers in paths A’ and D’ which are
used for Bell-state confirmation, but are removed when the entangled photons are
inserted into a following setup. Paths B’ and C’ are inserted on a Rotated PBS
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&
Herald

RPBS

PBS

λ/2-plate

polarisation analyser

A’

A B
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D’

C’

DC

B’’ C’’

Figure 5.1: Setup of a Heralded Entanglement Gate requiring four indistinguish-
able photons on the input. Photons are interfered via PBSs after which two pho-
tons are used for heralding (B” and C”) a Bell-state on the outputs (A’ and D’).

(RPBS) which is constructed of a normal PBS with a HWP at an angle of 22.5◦ in
every path. The outputs B” and C” go through polarisation analysers where co-
incidence counts between different polarisation combinations in B” and C” herald
different Bell states at ports A’ and D’.

The first step in understanding the entanglement gate is to evaluate the operation
of the gate assuming perfect input and perfect gate operation. This means that
all four inputs contain a diagonal polarisation after the input HWPs, and that all
optical components operate on the light in a perfect fashion.

A HWP has a single input path which can contain two polarisation’s (horizon-
tal |H⟩ and vertical |V ⟩). The operation matrix of the HWP can therefore be
written as a 2× 2 matrix via(

â′†H
â′†V

)
=

1√
2

[
1 1
1 −1

](
â†H
â†V

)
, (5.1)

where a denotes the path the photon is in and the apostrophe denotes the output
side of the HWP. Since the diagonal and anti-diagonal states are defined as

|D⟩ = â†D |0⟩ = 1√
2

(
â†H + â†V

)
|0⟩

|A⟩ = â†A |0⟩ = 1√
2

(
â†H − â†V

)
|0⟩ , (5.2)

the HWP rotates the horizontal and vertical state into the diagonal and anti-
diagonal state.
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The transformation from a PBS can be written as
â′†H
â′†V
b̂′†H
b̂′†V

 =


0 0 1 0
0 i 0 0
1 0 0 0
0 0 0 i



â†H
â†V
b̂†H
b̂†V

 (5.3)

where the horizontal polarisation is transmitted and the vertical polarisation is
reflected while it obtains a π/2 phase shift.

State evolution
The first step in calculating the output of the gate is to calculate the effect of the
PBS on an input state of ψAB = â†D b̂

†
D |0⟩. This state contains a diagonal photon

on both paths A and B and is written out as

|ψAB⟩ =
1

2

(
â†H b̂

†
H + â†H b̂

†
V + â†V b̂

†
H + â†V b̂

†
V

)
|0⟩ (5.4)

which is inserted in the PBS from Eq. 5.3. This results in an output of

|ψAB′⟩ = 1

2

(
â
′†
H b̂

′†
H − â

′†
V b̂

′†
V + iâ

′†
HV b̂

′†
0 + iâ

′†
0 b̂

′†
HV

)
|0⟩ , (5.5)

where the apostrophe denotes the output of the PBS. Path B’ contains a HWP
due to the RPBS. This HWP can be added in the path resulting in

|ψAB′.⟩ =
√
2

4

[(
â
′.†
H b̂

′.†
H + â

′.†
V b̂

′.†
H − â

′.†
H b̂

′.†
V + â

′.†
V b̂

′.†
V

)
+i

1

2
b̂
′.†
H b̂

′.†
V + i

1

4

(
â
′.†
H â

′.†
H − â

′.†
V â

′.†
V

)]
|0⟩ .

where the extra dot in the path notation indicates that this is between the first
HWP and PBS of the RPBS. The same can be done on path C and D

|ψCD′.⟩ =
√
2

4

[(
ĉ
′.†
H d̂

′.†
H + ĉ

′.†
H d̂

′.†
V − ĉ

′.†
V d̂

′.†
H + ĉ

′.†
V d̂

′.†
V

)
+i

1

2
ĉ
′.†
H ĉ

′.†
V + i

1

4

(
d̂
′.†
H d̂

′.†
H − d̂

′.†
V d̂

′.†
V

)]
|0⟩ .

Both states are now combined to calculate the effect of the PBS in the RPBS.
Since the PBS works on paths B’ . and C’ ., we write the state in terms of b̂′.† ĉ′.†
and â

′.† d̂
′.† . The states at different points through the rest of the entanglement

gate are written out in App. C where the combined state over all four paths is
written as |ψABCD”⟩. All states that can not result in a coincidence measurement
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on |⟩”B |⟩”C are removed from the final state (Eq. C.6) to improve visibility on the
relevant states.

When a measurement is heralded on a detection event in all four paths, the only
part of the state that could have contributed to this coincidence is

|ψABCD”⟩ =
1

4

(
Φ+
A”,D”Ψ

+
B”,C” −Ψ+

A”,D”Φ
+
B”,C”

)
(5.6)

with the Bell states [4] (p. 297)

|Φ±
A,D⟩ =

1√
2
(|H⟩A |H⟩D ± |V ⟩A |V ⟩D)

|Ψ±
A,D⟩ =

1√
2
(|H⟩A |V ⟩D ± |V ⟩A |H⟩D) . (5.7)

This shows that the photons in the output were maximally entangled when a four
fold coincidence was measured.

Heralding
We just showed the evolution of the state through the entanglement gate and
that a four fold coincidence at the output can only occur when the output pho-
tons were entangled. The next step is to use the other two photons as a herald for
this entanglement. This allows to connect a different setup after the gate and that
we know when an entangled photon pair entered that setup. The detectors in the
setup are non-photon number resolving and polarisation sensitive by using an op-
tical element to project on a specific polarisation. The heralding occurs at one of
the four detection possibilities of |H⟩B |H⟩C , |V ⟩B |H⟩C , |H⟩B |V ⟩C , or |V ⟩B |V ⟩C .
There are however more states in path B” or C” which can be measured as a her-
ald, e.g. |H⟩B |HH⟩C or |H⟩B |HV ⟩C also herald for |H⟩B |H⟩C . The heralding is
thus a detection on

µ
(j)
ζb,ζc

=
(
⟨0| b̂ζb ĉζc ĵb ĵc

)
(5.8)

where

ζκ ∈{H,V }
jκ ∈{κ̂0, κ̂H , κ̂V } .

In this projection ζb and ζc indicate the polarisation states in path B” or C” that
we herald on. jκ indicate he polarisation of the extra photons. This can be hori-
zontal (jH), vertical (jv) or no extra photon (j0). Equation C.6 shows that there
are 7 possible output states on path A’ and D’ when heralded on a coincidence in
B” and C”. The possible states are

|Ψ+
A,B⟩ , |Φ

+
A,B⟩ , |H⟩

′

A |0⟩
′

D , |V ⟩
′

A |0⟩
′

D , |0⟩
′

A |H⟩
′

D , |0⟩
′

A |V ⟩
′

D , |0⟩
′

A |0⟩
′

D .
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The probability to measure a certain state combined with a herald given by ζb and
ζc is given by

ρ
(ζb,ζc)

Ψ+
A,D

=
∑
j

∣∣∣µ(j)ζb,ζc ⟨Ψ+
A,D |ψABCD”⟩

∣∣∣2 (5.9)

ρ
(ζb,ζc)

Φ+
A,D

=
∑
j

∣∣∣µ(j)ζb,ζc ⟨Φ+
A,D|ψABCD”⟩

∣∣∣2 (5.10)

ρ(ζb,ζc)ϵ =
∑
N

∑
j

∣∣∣µ(j)ζb,ζc ⟨N |ψABCD”⟩
∣∣∣2 (5.11)

⟨N | ∈ {⟨H|A ⟨0|D , ⟨V |A ⟨0|D , ⟨0|A ⟨H|D , ⟨0|A ⟨V |D , ⟨0|A ⟨0|D}

where the superscripts of ρ indicate the polarisation combination of heralding and
the subscript indicate the measured state on paths A’ and D’. The measured state
on A’ and D’ is split in either the Ψ+

A,D, Ψ+
A,D or an erroneous state ϵ.

The heralding efficiency can be calculated knowing all the state efficiencies. This
is the probability to obtain the entangled state when a herald is measured, which
is the ratio between the state efficiency of the herald with the entangled state and
the total probability to measure the herald

Ps =
ρ
(b,c)

Ψ+
A,D

+ ρ
(b,c)

Φ+
A,D

ρ
(b,c)

Ψ+
A,D

+ ρ
(b,c)

Φ+
A,D

+ ρ
(b,c)
ϵ

. (5.12)

The heralding is depending on the operation of the polarisation analyser in Fig.
5.1. The analyser can be set to filter on a polarisation which requires only one de-
tector or it can split the polarizations which requires two detectors (one for each

(b,c)= HH V V HV V H
HH&
V V

HV&
V H

HH&V V&
HV&V H

ρ
(b,c)

Ψ+
A,D

8
256

8
256 0 0 8

128 0 8
128

ρ
(b,c)

Φ+
A,D

0 0 8
256

8
256 0 8

128
8

128

ρ
(b,c)
ϵ

17
256

17
256

17
256

17
256

5
128

5
128

10
128

Ps
8
25

8
25

8
25

8
25

8
13

8
13

8
13

Table 5.1: Probabilities of measuring a Φ+
A,D or Ψ+

A,D Bell-state or a noise output
state heralded on a specific combination with non-photon-number-resolving de-
tectors. This shows that the probability to obtain a heralded Bell-state is at best
ρ = 1/16 if the type of Bell-state is important and ρ = 1/8 if any Bell-state is
accepted. The heralding efficiency with non-photon-number resolving detectors is
Ps = 8/13.
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(b,c)= HH V V HV V H
HH&
V V

HV&
V H

HH&V V&
HV&V H

ρ
(b,c)

Ψ+
A,D

2
64

2
64 0 0 1

16 0 1
16

ρ
(b,c)

Φ+
A,D

0 0 2
64

2
64 0 1

16
1
16

ρ
(b,c)
ϵ

3
64

3
64

3
64

3
64 0 0 0

Ps
2
5

2
5

2
5

2
5 1 1 1

Table 5.2: Probabilities of measuring a Φ+
A,D or Ψ+

A,D Bell-state or a noise output
state heralded on a specific combination with photon-number-resolving detectors.
This shows an improvement in heralding efficiency up to Ps = 1.

polarisation). The advantage of the latter case is that this allows detection when a
path contains multiple photons with different polarisation, removing these detec-
tion event as a possible herald. This reduces the number of noise herald and im-
proves the heralding efficiency. Another advantage is that this allows the herald-
ing on different polarisation combinations at the same time, which increases the
general detection probability. Table 5.1 shows the detection probabilities and
heralding efficiency for the case of polarisation filtering and polarisation splitting.
When only a single polarisation is mentioned it is assumed to be filtering and
when multiple polarisation sets are mentioned as heralds it is polarisation split-
ting where we identify between the given polarizations. This table assumes non
photon-number resolving detectors. In the case of splitting there are two scenarios.
We either herald a specific output Bell-state (heralding on |H⟩B |H⟩C & |V ⟩B |V ⟩C
or |H⟩B |V ⟩C & |V ⟩B |H⟩C), or heralding on having an output Bell-state while
knowing which state it is (Heralding on all four possible combinations).

This table shows a heralding efficiency of Ps = 32% in the case of polarisation
filtering and Ps ≈ 62% in the case of polarisation splitting. Replacing the detec-
tors for photon-number resolving detectors improves the heralding efficiency since
multiple photons of the same polarisation in a single path can be removed from
the heralds. The detection probabilities and heralding efficiencies in this case are
shown in Tab. 5.2. Polarisation filtering reaches a heralding efficiency of Ps = 40%
while polarisation splitting reaches a heralding efficiency of Ps = 100%.

5.2 Effects of experimental limitations
The above given calculation assumes a perfect setup, which is unfeasible in an ex-
perimental situation. Different effects play a role on how the state evolves. This
section introduces the effect from optical components and from an imperfect source.
The two used components are a PBS and a HWP, having a transmission efficiency
of ηL. The waveplate has a non-perfect retardation of δλ and a angle set to α.
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The PBS has an imperfection in the splitting of the polarisation, introducing the
efficiency of the vertical polarisation being reflected of ηV (where 1 − ηV is trans-
mitted) and the horizontal polarisation being transmitted of ηH (where 1 − ηH is
reflected). Other limitations occur from the source since there is a limited indistin-
guishability (Q, section 2.3.3)† between the photons with a limited single photon
purity. Another imperfection is the generation probability of a photon at every
input, which results from the used demultiplexer efficiency (Chap. 3) and source
efficiency. These limitations on the generation probability and the single photon
purity can be solved by adjusting the input state and do not require a change in
the entanglement gate. The indistinguishability is implemented on the beamsplit-
ters, since that is where the different photons interfere with each other. The trans-
fer matrix for the HWP is given in Eq. 5.13, where the loss state is given by L̂
and implemented to maintain constant normalisation.â

′†
H

â
′†
V

L̂

 =

√
ηL
(
cos2 (α) + sin2 (α) eiδλ

) √
ηL sinα cosα

(
1− eiδλ

)
0√

ηL sinα cosα
(
1− eiδλ

) √
ηL
(
cos2 (α) eiδλ + sin2 (α)

)
0√

1− ηL
√
1− ηL 1


â†Hâ†V
L̂


(5.13)

The transfer matrix for the PBS in case of partial indistinguishability and losses is
given by Eq. D.1 in App. D. The factors in front of the double vertical line denote
a general multiplier for that row. The limited indistinguishability is implemented
via the Q-parameter (Sec. 2.3.3) and results in an expanding number of modes af-
ter a PBS. This modal expansion consist of the indistinguishable modes, and the
distinguishable modes with an index to identify from which input the photon is.
It is assumed that the already distinguishable modes out of the first PBS set are
assumed to be fully distinguishable on the second PBS. The Q-parameter on the
second PBS for the already distinguishable modes is QPBS2 = 0, the indistinguish-
able modes have a QPBS2 ̸= 0.

We calculate the effect of indistinguishability and loss on the entanglement gate
while assuming pure single photons (g2(0) = 0). First is the effect of only the
indistinguishability investigated to which the losses are added later. There are
two indistinguishability parameters to investigate since we assume that the in-
distinguishability between path A and B is equal to the indistinguishability be-
tween path C and D. Calculating the output probabilities shows that heralding
on |H⟩B |H⟩C & |V ⟩B |V ⟩C has the same probabilities as heralding on |H⟩B |V ⟩C &
|V ⟩B |H⟩C with the difference that the output Bell-state is different. The rest of
the calculation assumes that the heralding is in the polarisation splitting configu-
ration. The probability to obtain an output Bell-state and a herald is independent
of the type of detectors (photon number resolving or not), and is always given by

ρ
(H,H)

Ψ+
A,D

+ ρ
(V,V )

Ψ+
A,D

= ρ
(H,V )

Φ+
A,D

+ ρ
(V,H)

Φ+
A,D

=
Q4

1Q
2
2

16
(5.14)

†Reminder: Q =
√
VHOM .
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where Q1 is the indistinguishability parameter on the first two PBSs and Q2 on
the RPBS. If these Q-parameters are set to 1 (perfect indistinguishable), the cal-
culated probability from Tab. 5.1 and Tab. 5.2 are obtained (ρ = 1/16). The
heralding efficiencies depends on if the photon number is measured. Measuring
with non-photon-number-resolving detectors the heralding efficiency is given by

Ps =
64Q4

1Q
2
2

4Q4
1Q

4
2 − 4Q4

1Q
2
2 −Q4

1 − 40Q3
1Q

2
2 + 44Q2

1Q
2
2 − 50Q2

1 + 151
, (5.15)

while photon number resolving detectors yield a heralding efficiency of

Ps =
16Q4

1Q
2
2

2Q4
1Q

2
2 − 3Q4

1 − 2Q2
1Q

2
2 − 8Q2

1 + 27
. (5.16)

Inserting perfect indistinguishable photons (Qn = 1) yield again the same results
as Tab. 5.1 and Tab. 5.2.

Realistic values for the indistinguishability are obtained from [60], since they mea-
sured the indistinguishability at 289 ns and 830 ns. This is roughly the time sep-
aration of 20 photons (τQ1 = 20/

(
76.2 · 106

)
≈ 262 ns) and 60 photons (τQ2 =

60/
(
76.2 · 106

)
≈ 787 ns) as obtained from the demultiplexed source from Ch. 3.

The measured indistinguishability were VHOM,289 = 94.8% and HOMdip,830 =
93.2%, which we insert in our calculation for the entanglement gate. The resulting
heralding probability and probability to obtain a Bell-state (PBell = ρΨ+

A,D
+ ρΦ+

A,D
)

are shown in Tab. 5.3 for the case of photon number resolving detectors and non-
photon number resolving detectors. The probability to obtain a Bell-state is in-
dependent of the heralding detectors since this is the raw probability of obtaining
a Bell-state on paths A’ and D’. The heralding efficiency is at best pS ≈ 81%
with photon number resolving detectors with the given indistinguishabilities. A
setup with non-photon number resolving detectors has a heralding efficiency of
PS ≈ 50%.

The next step to analyse is the effect of the limited efficiency of the demultiplexer
and the Entanglement gate. We measured the port-to-port transmission efficiency
of the entanglement gate between every port, yielding an averaged efficiency of
ηP−P = 88%. Knowing the efficiency of the demultiplexer, we calculated the
rate in which we obtain heralding coincidences (FH), the rate in which we ob-
tain a Bell-state (FB) and the heralding efficiency depending on the input count

PBell Ps

Non-number resolving ≈ 5.2% ≈ 50%

Number resolving ≈ 5.2% ≈ 81%

Table 5.3: Detection and heralding efficiencies with realistic indistinguishabilities
and perfect efficiencies. Heralding is done on either |H⟩B |H⟩C & |V ⟩B |V ⟩C or
|H⟩B |V ⟩C & |V ⟩B |H⟩C .
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rate in the demultiplexer setup. Assuming perfect indistinguishability between
the photon, we obtain the estimation shown in Fig. 5.2. The repetition rate of the
laser is taken to be Frep = 76.152 MHz, as measured in Ch. 3. The expected her-
ald rate depending on the input photon rate of the demultiplexer setup is given
in Fig. 5.2 (a) for photon number resolving detectors (magenta line) and non-
number resolving detectors (green line). This is the total rate of obtained heralds,
including the noise heralds. The top axis shows the effective photon generation
rate, which is the input rate divided by the laser repetition rate. The obtained
rate of output Bell-states is given in the inset (in MHz), depending on the effec-
tive photon generation rate. The heralding efficiency is given in Fig. 5.2 (b) for
both the number resolving and the non-number resolving detectors. These graphs
show that the best obtainable Bell-state rate FB = 0.38 MHz. The best obtain-
able heralding efficiencies are PS = 24% (non-number resolving detectors) and
PS = 31% (number resolving detectors) for the current setup efficiencies. If the
input source counts is 25 MHz, the heralding efficiency is limited to 1% for both
cases. This shows that improvement of the source count rate and the setup trans-
mission efficiencies are required to obtain reasonable heralding efficiencies.
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Figure 5.2: Expectation from the heralded entanglement gate assuming pure
indistinguishable photons from a source with losses. The source is assumed to
be pumped at 76.152 MHz. The demultiplexer efficiencies from Ch. 3 are used
together with an effective gate transmission of 88%. (a) Expected herald rate
depending on the input count rate of the demultiplexer with number resolving
detectors (magenta) and non-number resolving detectors (green). This are all her-
alds and therefore includes the noise heralds. Top axis shows the effective photon
generation probability for the given source rate. Inset shows the rate of Bell-states
for the given effective photon generation probability. (b) heralding efficiency de-
pending on the input count rate of the demultiplexer for the same two possible
detector configurations.
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5.3 Entanglement confirmation
The generated entanglement from the gate has to be confirmed, which can be
done via Bell-Measurements and evaluating Bells-inequality [11]. The Bell-inequality
was originally proposed to test if an experiment could be described via local hid-
den variable theory as proposed by Einstein, Podolsky and Rosen (EPR-paradox)
[10]. If the Bell-inequality is violated, the outcome cannot be described by local
hidden variables and must be quantum. An experimental setup for testing Bell-
inequalities is shown in ref [208], where the violation of the CHSH -inequality is a
measure if the system is quantum. The CHSH -inequality is defined with the S-
parameter. The first experiment to violate the CHSH-inequality comes from A.
Aspect et al. in the series of papers [12–14]. The S-parameter given in [208] can
be calculated via [4] (p. 308)

S = E (θ1, θ2)− E
(
θ1, θ

′
2

)
+ E

(
θ′1, θ2

)
+ E

(
θ′1, θ

′
2

)
, (5.17)

with

E (θ1, θ2) = P11 (θ1, θ2) + P00 (θ1, θ2)− P10 (θ1, θ2)− P01 (θ1, θ2) . (5.18)

The parameters θ1 and θ2 are measurement settings for the two different entan-
gled particles where both side can be in the setting a (θ1 or θ2) or setting b (θ′1 or
θ′2). Since this is a measurement, the parameter Pab is a probability of measuring
coincidence ab with the given measurement settings. In case of polarisation entan-
glement, these parameters are the angle of a waveplate before a PBS with the set-
tings θ1 = 0.0◦ or θ′1 = 45.0◦ θ2 = 22.5◦ or θ′2 = 67.5◦. The detectors 1 and 0 are
the detectors in the horizontal and vertical output of the PBS. The Bell-inequality
is now written as −2 ⩽ S ⩽ 2 or |S| ⩽ 2, and the system is quantum if S > 2.

5.4 Conclusion
This chapter showed a setup to generate polarisation entangled photons where
the problems of probabilistic generation are overcome by heralding. To obtain
the highest heralding efficiency, the heralding has to be polarisation and photon-
number resolving. This can yield a heralding efficiency of Ps = 100%. If the de-
tectors are not number resolving, the heralding efficiency for a perfect setup is
Ps ≈ 62%. This chapter also introduced a method to calculate the state evolution
for an imperfect setup and imperfect inputs. If the setup is assumed to be perfect
but the input photons have a realistic indistinguishability we obtain a heralding
efficiency PS ≈ 81% with number and polarisation resolving detectors. Assum-
ing perfect indistinguishable photons but realistic losses, the heralding efficiency
is limited to PS ≈ 31%. The last section introduces a method to analyse if the
output state is indeed an entangled state by the methods of the CHSH -inequality
derived from Bells-inequality.
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In quantum information processing, it is assumed that a quantum computer can
obtain a calculation speed advantage over classical computers, the so-called quan-
tum advantage. A general design for a quantum computer is the KLM -scheme
[20] proposed by Knill, Laflamme and Milburn in 2000. This scheme proposes a
general quantum computer including overhead for error correction. The resources
required for this are however far out of reach with current technologies due to the
large number of operations and qubits required to perform single gate operations
[21]. The required resources causes this scheme to be unfeasible to prove quantum
advantage. An alternative is a specialised quantum computer which is optimised
for a single task and can outperform a classical computer for this individual task.
This will prove quantum advantage and can be used as a building block for the
general quantum computer. A different route to prove quantum advantage is via
quantum simulation instead of a quantum computation. Certain Hamiltonians can
be simulated by mapping them on the simulator which is faster than simulating
or calculating the Hamiltonian on a classical computer. It is shown that a quan-
tum simulator can be made with a passive linear optical network [26, 209–211].
This network consists of a collection of beamsplitters with phase-shifters in be-
tween with N number of inputs and outputs. This results in a unitary matrix of
N -by-N. When single indistinguishable bosons (e.g. photons) are inserted on the
input, the output can be predicted by calculating the permanents of the unitary
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matrix. It is shown that calculating permanents is hard for a classical computer
[212, 213]. There are however constraints on the unitary matrix before the perma-
nent is classically hard to calculate [214]. This type of quantum simulator is called
the BosonSampler.

The first experiments on BosonSampling originate from 2013, which are proof of
principle measurements [28–31]. All of these consist of spatial modes interfer-
ing through linear optics. The number of elements expands when the number
of modes increases. This expansion can be overcome by using time-bin encod-
ing, where the number of interfering elements remains equal [44, 215]. Time-bin
BosonSampling requires two nested loops of which one loop (inner loop) interferes
consecutive photons by adding a time delay of one time-bin. The second loop is a
loop that is larger than the number of time bins, and allows multiple iterations of
interference in the inner loop. The switching in and out of the loop can be done
via polarisation, where a tunable waveplate before a PBS can select the fraction
that will enter the inner loop. The inner loop has two possible configurations, a
feedback configuration where a photon can be delayed multiple rounds or a feed
forward where a photon can be delayed at maximum one time-bin, as performed
in [215]. The feedback loop configuration also has a tunable waveplate before the
PBS to determine the fraction that obtains another time-bin of delay.

This chapter introduces a time-bin BosonSampler with an inner loop in the feed-
back configuration with realistic switching components. The setup will be intro-
duced in Sec. 6.1 followed by the calculation of the unitary matrix in Sec. 6.2.

EOMa

EOMb

S
w

it
c
h
 i
n

Switch out

P
h
o
to

n
 s

o
u
rc

e

Detector

PBS

Figure 6.1: BosonSampler setup consisting of two loops with the inner loop in the
feedback configuration. Photons are switched into the inner loop via EOM-a and a
PBS, and switched out of the inner loop via EOM-b and the same PBS. This con-
figuration allows modes to obtain a delay of more than one time-bin. The photons
are switched in and out of the setup via non-polarisation-sensitive switches.
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6.1 Time-bin BosonSampling setup
The setup proposed for time-bin BosonSampling is shown in Fig. 6.1 and consists
of two loops with EOMs to switch between them. The inner loop has the length
necessary to delay a photon by exactly one time-bin, while the outer loop has a
length required to delay at least the number of modes while being locked to a de-
sired timing of the EOMs. Single photons generated from a source are switched
into the outer loop and make the required circulation in the outer and inner loop
to applying the designed unitary evolution. Afterwards they are switched out to a
detector with a time tagger to obtain information about the time-bin in which the
detection event occurred.

The modes in this setup are not only the time-bins but there is also a polarisa-
tion degree of freedom. There exist two orthogonal polarisations per temporal
mode, making the total maximum number of modes (M) two times the number
of temporal modes (T ; M = 2T ). Due to these polarisation modes, the switches to

H

V

H/V

EOM a

A X

EOM b

(a)

(b)

(c)

Figure 6.2: Schematic representation of the BosonSampling circuit with five
temporal input modes. (a) Single PBS building block, with from the top the
input from the inner loop and in blue EOM-b. From the left is the input from
the outer loop with EOM-a as the input switch. Concatenating multiple PBS
elements yields (b), with five input temporal modes. An EOM with a diagonal
line indicates that this EOM is forced to perform an X-operation, which switches
horizontal and vertical polarisation. This is required to maintain the number of
modes. This block represents one circulation around the outer loop where pho-
tons can circulate in the inner loop for multiple rounds. Concatenating multiple
circulations around the large loop result in schematic (c) which is a full time-bin
BosonSampling run. The colour of the lines represents the allowed polarisation
modes for the illustrated temporal mode and the circles represent the input and
output modes.
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switch photons in and out of the interfering setup have to be polarisation insensi-
tive.

The switching of EOM-a and EOM-b determines how all the modes mix with each
other as schematically represented in Fig. 6.2. Part (a) shows the basic building
block of the BosonSampler, a single switch. This shows the PBS in the setup with
two inputs and outputs. The left input is from the outer loop where the splitting
ratio into the delay loop and the polarisation mixing is done with EOM-a. The in-
ner loop enters from the top where EOM-b mixes the two polarisations, determin-
ing the splitting ratio of exiting and remaining in the inner loop. A single circula-
tion around the outer loop yields Fig. 6.2 (b), which is a concatenation of multiple
inner loop circulations. The colour of the temporal modes represents which po-
larisation modes are allowed for that temporal mode. A diagonal line through an
EOM indicates that the operation is fixed to be crossed (switching horizontal and
vertical polarisation). All other EOM settings are allowed to be arbitrary. The
first and last temporal mode have a boundary on the allowed polarisation to en-
sure that the total number of modes remains constant and therefore

M = 2(T − 1) (6.1)

is the actual number of modes in the system. Concatenating multiple circulations
around the outer loop results in a schematic of Fig. 6.2 (c) which is also the total
operation of the setup to mix all modes. This shows that for T number of tempo-
ral modes, a total of T − 1 circulations around the outer loop with T circulations
in the inner loop (per outer loop circulation) are required to interfere all modes. A
used assumption for the schematic is that the horizontal polarisation is transmit-
ted by a PBS, but this is a matter of convention and does not alter the operation
of the time-bin BosonSampler.

6.2 Calculating the unitary operation
The next step is to calculate the unitary evolution of the BosonSampler. This can
be done by analysing the unitary matrix for every individual circulation around
the outer loop. This matrix can be written as

¯̄U (L) =


U

(L)
p=1,q=1 . . . U

(L)
p=1,q=M

... . . . ...
U

(L)
p=M,q=1 . . . U

(L)
p=M,q=M

 (6.2)

where index q denotes the input mode number, index p the output mode number
and the superscript (L) is the circulation iteration in the outer loop. The total
unitary evolution can then be written as

¯̄U =

T−1∏
κ=1

¯̄U (T−κ). (6.3)
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time-bin number T 1 2 2 3 3 4 4 5

mode number m 1 2 3 4 5 6 7 8

Mode configuration |H1⟩ |V2⟩ |H2⟩ |V3⟩ |H3⟩ |V4⟩ |H4⟩ |V5⟩

Table 6.1: Assigning mode indices to temporal and polarisation modes. The in-
dex in the mode configuration denotes in which time-bin that polarisation mode
resides.

This is effectively multiplying all individual matrices via left handed multiplica-
tion. The next step is to assign mode indices to the different states, which is done
in Tab. 6.1 for T = 5. The numbering is done in order of time-bin where every
time-bin has two consecutive mode numbers for the two polarisation modes. The
polarisation is numbered with first the vertical and than the horizontal polarisa-
tion. All the horizontal polarisations are an odd-numbered mode while the vertical
polarisations are even-numbered. Using Fig. 6.2 (b) together with the mode as-
signment of Tab. 6.1 and the physical operation, the unitary evolution of a single
outer loop circulation can be written out as

¯̄U (L) =



0 U
(L)
1,2 U

(L)
1,3 0 0 0 0 0

U
(L)
2,1 U

(L)
2,2 U

(L)
2,3 0 0 0 0 0

0 0 0 U
(L)
3,4 U

(L)
3,5 0 0 0

U
(L)
4,1 U

(L)
4,2 U

(L)
4,3 U

(L)
4,4 U

(L)
4,5 0 0 0

0 0 0 0 0 U
(L)
5,6 U

(L)
5,7 0

U
(L)
6,1 U

(L)
6,2 U

(L)
6,3 U

(L)
6,4 U

(L)
6,5 U

(L)
6,6 U

(L)
6,7 0

0 0 0 0 0 0 0 U
(L)
7,8

U
(L)
8,1 U

(L)
8,2 U

(L)
8,3 U

(L)
8,4 U

(L)
8,5 U

(L)
8,6 U

(L)
8,7 U

(L)
8,8


. (6.4)

All the zero elements in the matrix occur from physical limitations due to the ori-
entation and transmission and reflection properties of the PBS. This shows that
the vertical output modes have more contributing input modes than the hori-
zontal output modes. This can be explained since a vertical output mode comes
from circulation through the inner loop while horizontal output modes come from
modes not entering the inner loop.

To calculate all the matrix elements, the building block from Fig. 6.2 (a) has to
be applied T + 1 times. Indication of the time instance can be done with the same
indication as the input time-bin from the large loop. From Fig. 6.2 (b) it can than
been seen that the index t runs from 1 to T + 1. Every building block from Fig.
6.2 (a) consists of a polarisation mixing EOMs inserted in both input arms of the
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PBS. The individual EOMs have a transfer function of

¯̄E
(L)
a,t =

[
E
vv,(L)
a,t E

hv,(L)
a,t

E
vh,(L)
a,t E

hh,(L)
a,t

]
(6.5)

¯̄E
(L)
b,t =

[
E
vv,(L)
b,t E

hv,(L)
b,t

E
vh,(L)
b,t E

hh,(L)
b,t

]
(6.6)

where h and v in the superscripts denote from which to which polarisation the
transfer is executed. The PBS is defined to transmit the horizontal polarisation
without any phase shift while the vertical polarisation is reflected with a π/2 phase
shift. The constraint to maintain an equal number of modes shows that the ele-
mentwise absolute value of

¯̄E
(L)
a,1 = ¯̄E

(L)
a,T = ¯̄E

(L)
b,2 = ¯̄E

(L)
b,T+1 =

[
0 1
1 0

]
(6.7)

and that ¯̄E
(L)
a,T+1 and ¯̄E

(L)
b,1 are not used. The matrix elements from Eq. 6.7 can

still have a phase shift which is different for every element.

Knowing the building block of the temporal BosonSampler, the unitary matrix
can be calculated. The elements which are zeros in ¯̄U (L) are already known and
only the non-zero elements will be addressed via different equations. The first
condition is when p is odd, so the output mode number is odd (horizontal output
modes), yielding

U (L)
p,q = U

(L)
p,p+1 =E

vh,(L)

a,[ p+3
2 ]

(6.8)

U (L)
p,q = U

(L)
p,p+2 =E

hh,(L)

a,[ p+3
2 ]

The other condition is when p is even which corresponds to the vertical output
modes. These have to be separated on going through the inner loop for a single
circulation (q = p and q = p + 1) or for multiple circulations (q < p). For a single
circulation in the inner loop, this yields

U (L)
p,q = U (L)

p,p =E
vv,(L)

a,[ p+2
2 ]
E
vv,(L)

b,[ p+4
2 ]
eiπ (6.9)

U (L)
p,q = U

(L)
p,p+1 =E

hv,(L)

a,[ p+2
2 ]
E
vv,(L)

b,[ p+4
2 ]
eiπ

while multiple circulations yield

U (L)
p,q = E

hv,(L)

a,[ q+1
2 ]
E
vh,(L)

b,[ q+3
2 ]
E
hv,(L)

b,[ p+4
2 ]
eiπ

p+2
2∏

w= q+5
2

E
hh,(L)
b,[w] (6.10)
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when q is odd and

U (L)
p,q = E

hv,(L)

a,[ q+2
2 ]
E
vh,(L)

b,[ q+4
2 ]
E
hv,(L)

b,[ p+4
2 ]
eiπ

p+2
2∏

w= q+6
2

E
hh,(L)
b,[w] (6.11)

when q is even. †

The initial constraint of a non-expanding number of modes resulted in constraints
on the EOM operations. If this is used in the above given equations, it results in
U

(L)
M,M = 0 and U

(L)
M−1,M = 1. Knowing how to calculate the unitary matrix, the

physical devices can be inserted in the calculation. Highly efficient EOMs are cur-
rently not yet able to generate completely arbitrary pulses. As discussed in Chap.
3, electrical broadband EOMs are limited at a repetition rate of 1 MHz. Resonant
EOMs are capable of faster switching but oscillate at only one electrical frequency.
Since the idea is to switch different photons with a different ratio, the resonant
EOMs are preferred since the electrical broadband EOM performs the same rota-
tion to multiple consecutive photons.

The designed EOM configuration for the setup in Fig. 6.1 consists of a quarter
wave EOM (EOM-1) and a half wave EOM (EOM-2) in the outer loop and having
only a half wave EOM (EOM-3) in the inner loop. This design yields Ea = E1E2

and Eb = E3 with

E1 =
1√
2

[
1− i cos (2θ1,t) i sin (2θ1,t)
i sin (2θ1,t) 1 + i cos (2θ1,t)

]
(6.12)

E2 = i

[
− cos (2θ2,t) sin (2θ2,t)
sin (2θ2,t) cos (2θ2,t)

]
E3 = i

[
− cos (2θ3,t) sin (2θ3,t)
sin (2θ3,t) cos (2θ3,t)

]
,

resulting in

Ea =
1√
2

[
−i cos (2θ2,t)− cos (2 (θ1,t − θ2,t)) i sin (2θ2,t) + sin (2 (θ1,t − θ2,t))
i sin (2θ2,t) + sin (2 (θ1,t − θ2,t)) +i cos (2θ2,t)− cos (2 (θ1,t − θ2,t))

]
(6.13)

Eb = i

[
− cos (2θ3,t) sin (2θ3,t)
sin (2θ3,t) cos (2θ3,t)

]
,

where θ is the angle between the waveplate axes and the polarisation axes.

Inserting the constraints of the resonant EOMs to maintain the number of modes
is done by setting up the equations for θ1,t, θ2,t and θ3,t.

†∏<ϵ
ϵ = 1
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A solution to the constraints comes in the form of

θ1,t =
π

4

A1

2

[
1− cos

(
2πI1

t− 1

T − 1

)]
(6.14)

θ2,t =
π

4

(
1− A2

2

[
1− cos

(
2πI2

t− 1

T − 1

)])
θ3,t =

π

4

(
1− A3

2

[
1− cos

(
2πI3

t− 1

T − 1

)])
where A and I are free parameters and A indicates the effective angle range be-
tween the waveplate axes and the polarisation axes (0 ≤ A ≤ 1) and I is an
integer indicating the number of oscillations within one circulation. This shows
that the complete unitary matrix is defined by only 6 free parameters. It is yet
unknown if this is sufficient to obtain a hard random matrix or if the structure in
the matrix allows classical computer to efficiently calculate the permanents of the
matrix.

Knowing the unitary matrix, the total efficiency of the setup should be calculated
focusing on the probability to obtain an n-fold coincidence at the detectors when
n-number of photons are inserted into the BosonSampler. This calculation uses
the assumption that n ≪ M so there are no two photons in the same mode at the
output. The challenge in this calculation is to calculate the efficiency around the
inner loop since the efficiency depends on the number of circulation the photon
makes in the inner loop. The other elements are trivial since every photon has an
input efficiency (ηin), an output efficiency (ηout) and T −2 occurrences of the outer
loop efficiency (ηT−2

LL ).

Estimating the efficiency for all the circulations around the inner loop require
some estimations, making the output an approximation. To obtain the exact ef-
ficiency, all losses must be taken into account in the unitary matrix which is then
extended with loss modes.

The used approximation is that every input photon is equally distributed over the
output modes it can reach. This yields an average efficiency per photon for the
inner loop circulations of

ηILA =

(
T∑
k=2

ηkIL
T − 1

+ 2 ·
T−1∑
t=2

(
T−t+1∑
k=0

ηkIL
T − t+ 2

)
+ 1

)
1

M
, (6.15)

Where ηIL is the efficiency of the inner loop. The first and last term in the brack-
ets are the summations for the first and last time bin mode, and the central part
are for all time-bin modes that contain two polarisations. The factor 1/M at the
end is the normalisation to the number of modes. We now calculate the average
probability to obtain an n-fold coincidence of

Pn-fold =
(
ηT−1

ILA ηT−2
LL ηoutηin

)n
. (6.16)
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Figure 6.3: Expectations in measured n-fold coincidence rate for the BosonSam-
pler with realistic efficiencies. The magenta points shows the expectation when
M = 2n and the green points when M = n2. Both modal expansions are calcu-
lated when the input photon rate Fin = 1.7 MHz and Fin = 15 MHz. The blue
dot-dashed line marks a rate of 1 detected n-fold coincidence per hour and the
orange dot-dashed line indicate 1 detected n-fold coincidence per day. The lines
connecting the calculated n-fold coincidences are a guide to the eye.

The predictions for n-fold coincidence rates allows us to calculate the expected
rates for different number of input photons. First we have to yield realistic values
for the variables in Eq. 6.16. The input laser has a repetition rate of 76.152 MHz.
The switches to switch in and out are assumed to have an efficiency of 85% when
switching and 100% when not switching. These only affect ηin and ηout for that
reason. Other effects on ηin and ηout are the source efficiency (ηin) and the detec-
tor efficiency (ηout), of which the source efficiency is used as a free variable and
the detector efficiency is ηdet = 88%. The inner loop is only influenced by the
switch in the inner loop, which we assume ηsw = 97% (see Ch. 3). The outer loop
has two of these switches, a fibre coupler and a fibre to delay the light. The fi-
bre is assumed to have a loss of 3.5dB/km (Fibre type: 780HP), and the length
is based on the number of modes. When an sampling experiment is ongoing, no
new photons can enter the setup for a next sampling experiment. The effective
repetition rate is therefore reduced by the number of modes squared [27, 44, 190].
The last variable that has to be set is the number of modes. There are two com-
mon conventions for the required number of modes for a BosonSampler, which are
M = 2n and M = n2. We calculate the expected coincidence rates depending on
the number of photons with both conventions. We do this for two different source
efficiencies,with an input photon rate Fin = 1.7 MHz and Fin = 15 MHz. The
results are plotted in Fig. 6.3 where the magenta points indicate M = 2n and the
green points indicate M = n2. The circles indicate Fin = 1.7 MHz and the trian-
gles indicate Fin = 15 MHz. The lines are a guide to the eye to trace the different
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efficiencies. The dot-dashed lines indicate a sample rate of 1 per hour (blue) and
1 per day (orange). This shows that the source from Ch. 3 (Fin = 1.7 MHz) can
perform a BosonSampling experiment with at max 4 photons, independent of the
scaling for the number of modes. Increasing the input rate to 15 MHz enables a
BosonSampling experiment wit a maximum of 7 photon when M = 2n.

6.3 Conclusion
This chapter proposed a design for a temporal BosonSampler configured with a
feedback delay loop allowing a mode to be delayed by more than one time-bin. An
equivalent beamsplitter network is constructed for analogies to the original passive
component model. This model was used to formulate constraints on the mixing to
ensure a constant number of modes.

The unitary matrix of the system is calculated which can be split in matrices for
every individual circulation around the outer delay loop. It is shown that the min-
imum number of required circulation around the large delay loop is T − 1 with
T being the number of temporal modes. This architecture allows the temporal
modes to contain two polarisation modes, except for the first and last temporal
mode. The calculation also shows in which way realistic switching elements can
be implemented and gave an example with a total of 6 free parameters to tune the
unitary matrix. The next step is to calculate if the possible unitaries are hard ran-
dom matrices, which are required to show quantum advantage.

The last part consisted of efficiency approximations to estimate how efficient the
sampling can be performed. This shows that the total output probability scales
exponentially with the number of input photons and exponentially with the num-
ber of circulations around the outer loop. Using a source with the same efficiency
as in Ch. 3 (1.7 MHz) would result in a maximum BosonSampling experiment
with 4 photons to yield a count rate of more than one per day. Increasing the
source count rate to 15 MHz would yield a maximum BosonSampling experiment
with 7 photons. This assumes we take a number of modes that is twice the num-
ber of photons.

This method of BosonSampling is promising due to the limited number of devices,
but the delay lines can limit the efficiency for larger number of photons. Free
space BosonSampling has traditionally the advantage of higher efficiencies com-
pared to on-chip BosonSampling. This advantage was negated by [57], introducing
a structure with the efficiency advantage of free space BosonSampling at the size
of an on-chip BosonSampler. This yield a time-bin BosonSampling architecture
obsolete due to the larger scale and larger losses.
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CH. 7
Conclusion and outlook

In this thesis we presented work towards applications of quantum dot single pho-
ton sources. Different properties of the single photons and the single photon sources
are discussed and compared to the current state of the art. We studied the single
photon purity and photon indistinguishability together with the photon generation
rate, and how they affect the operation of different optical circuits.

The main focus of this thesis is on quantum dot single photon sources and their
applications. We performed investigations on the effect of the width of a nanobeam
waveguide on the embedded quantum dot. The differences and similarities of this
effect on the X0 and X− excitons were analysed. The measurements indicate that
the Stark parameter changes with the waveguide width. Further we observed that
the transmission dip visibility reduced when the linewidths increased, indicating
that the broadening is due to noise. The measurements also showed that the X0

is typically more susceptible to noise than the X−, and that the Stark parameter
is larger for the X0 than for the X−. This indicates that the noise is induced by
charges around the quantum dot. Measurements on the coupling between a quan-
tum dot and a photonic crystal waveguide showed a Purcell enhancement of the
radiative decay rate when the exciton resonance is electrically tuned across the
bandedge. The measured linewidths were however broadened due to the noise and
could not supplement the lifetime measurements.
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Photons generated from a quantum dot source were demultiplexed in space with a
temporal-to-spatial mode converter. The input source count rate in the demul-
tiplexing setup was 1.7 MHz, resulting in a detected four fold coincidence rate
of F4F = 1.05 ± 0.05 Hz. The quantum dot is pumped at a repetition rate of
76.152 MHz, thus a thorough analysis of the source efficiency was carried out.
This allowed the identification of the limiting factors in the source efficiency. In-
creasing the source efficiency to obtain an input count rate to 25.6 MHz would
result in a detected four fold coincidence rate of F4F ≈ 38 kHz. Comparing the de-
multiplexer to other work via our models shows that our demultiplexer is the most
efficient demultiplexer yet.

The generated four photon states by the demultiplexer can be utilised to generate
polarisation entangled photon pairs. This can be done with a heralded entangle-
ment gate, where two photons are used as a herald for a polarisation entangled
photon pair. We set up a model to analyse the entanglement gate for realistic
photon properties. We calculated the heralding efficiency in a case of pure single
photons, no losses but with a realistic indistinguishability. This showed that the
maximum achievable heralding efficiency with state of the art indistinguishability
reaches PS ≈ 81% with photon-number resolving detectors. A heralding efficiency
of PS ≈ 62% is reached with non photon-number resolving detectors.

In the last chapter we analysed a time-bin BosonSampler with an inner loop in the
feed-back configuration. A switching scheme to preserve the number of modes is
presented and we analysed the unitary evolution in this configuration. The effect
of realistic switches are introduced and we made an estimation of the M-fold coin-
cidence rates after the BosonSampler.

Outlook
The spectral properties of quantum dots embedded in nano-photonic structures
benefit from deterministic fabrication of nano-structures around the quantum
dot. This allows a better in-depth analysis of the effect of the nanobeam waveg-
uide width. A more in-depth investigation of the noise can clarify if the increased
amount of noise measured on the X0 is due to the larger Stark-parameter. The
photonic crystal waveguides benefit from deterministic fabrication since the quan-
tum dot can be located where the β-factor is the largest.

The demultiplexing setup can be upgraded to an 8-mode converter by adding an
extra EOM. Using this with a single photon source that can give 17 MHz of pho-
tons at the input of the demultiplexer will result in a 1 Hz of 8-fold coincidences.
This can be used to operate two entanglements gates, yielding the heralding of
two entangled photon pairs. This allows proof of principle measurements for de-
vice independent QKD. Utilisation of a single heralded entanglement gate can be
done with a quantum random number generator.
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APPENDIX A
Rate equation modelling for demultiplexed source

This appendix describes the rate equation modelling used to calculate the the
bright state efficiency of the source in chapter 3. The model used is given in
Fig. A.1 where we use the excitation to some higher state (A) which can relax into
either the bright state (B) or the dark state (D). The pumping rate γga excites the
ground state (G) to state (A) which decays with γab and γad into the bright and
dark states respectively. The bright and dark states decay back into the ground
state via γbg and γdg. The rate equation model can be set up as described in Sec.
2.3.4 but now with four states. The matrix representation of this model is

ṅG
ṅA
ṅB
ṅD

 =


−γga 0 γbg γdg
γga − (γab + γad) 0 0
0 γab −γbg 0
0 γad 0 −γdg



nG
nA
nB
nD

 . (A.1)

The matrix has four eigenvalues and four eigenvectors from which the complete
time evolution for every state can be defined as

n(t)

#λ∑
k=1

ckv̄ke
λkt, (A.2)

where ck indicate constants determined by the boundary condition. If we set the
boundary condition on t = 0 to a state we know we obtain the equality

¯̄vc̄ = n̄(0) → c̄ = ¯̄v−1n̄(0). (A.3)

The most common initial condition is

n̄(0) =


1
0
0
0

 (A.4)

which means that all the population starts in the ground state. Knowing the
eigenvectors, eigenvalues and differential constants, we can calculate the efficiency
of the source.
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Appendix A. Rate equation modelling for demultiplexed source

G

A

DB

ΓGA

ΓADΓAB

ΓBG ΓDG

Figure A.1: Model used to set up the rate equations. The photon is ecited from
the ground state (G) to a higher state (A) with a pumping rate of γga. From the
higher order stated it relaxes into the bright exciton state (B) and dark exciton
state (D) with relaxation rates γab and γad. The bright and dark states decay back
to the ground state with γbg and γdg. The decay from the bright state yields a
photon and the source efficiency at time t is therefore the normalised population
in the bright state nb(t).

We know that one of the eigenvalues will be zero, which we assume to be λ1 = 0.
When the time goes to infinity t→ ∞, only the exponential term with λ1 remains.
Therefore we only consider the eigenvector and differential constant belonging to
λ1, which are v̄1 and c1. These values are calculated to be

v̄1 =



γdg(γab+γad)
γadγga

γdg
γad

γabγdg
γadγbg

1


(A.5)

and

c1 =
γadγbgγga

γabγbgγdg + γadγbgγdg + γadγbgγga + γabγdgγga + γbgγdgγga
. (A.6)

The saturation behaviour is now given by the element from the eigenvector
describing the bright state multiplied with the differential constant

ηs(γga) =
γabγdgγga

γabγbgγdg + γadγbgγdg + γadγbgγga + γabγdgγga + γbgγdgγga
. (A.7)
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Where the maximum efficiency is reach when γga is large compared to the rest,
resulting in

ηs(γga → ∞) =
γabγdg

γadγbg + γabγdg + γbgγdg
. (A.8)

We assume that γab = 2γbg and γad = 2γdg due to a cascade through the
bi-exciton, which simplifies the source efficiency to

ηs(γga → ∞) =
2γbgγdg

2γdgγbg + 2γbgγdg + γbgγdg
=

4

10
. (A.9)

The source efficiency is independent on the rates in the assumption we made.

To find the time evolution of the system we insert the measured decay rates of the
bright and dark state of γbg = 0.95 ns−1 and γdg = 0.05 ns−1. This result in
eigenvalues with unit ns−1 of

λ1 = 0, λ2 = −0.081, λ3 = −2.92, λ4 ∝ −γga, (A.10)

And eigenvectors multiplied with differential constants of

c1v̄1 =


0
0.2
0.4
0.4

 , c2v̄2 =


0

0.118
0.258
−0.376

 , c3v̄3 =


0

0.682
−0.658
−0.024

 , c4v̄4 =


1
−1
0
0

 . (A.11)
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APPENDIX B
Setup design of the demultiplexer

The design of the demultiplexer setup from Ch. 3 is shown in this appendix.
Figure B.1 shows the 4-fold demultiplexer setup together with the legend of the
optomechanical components. The size of the components in the drawing
corresponds to the physical size used on the optical table. The grid indicate the
screw holes of the optical table, where every cross-point of grid-lines is the
location of the screw hole. The real distance between the grid lines is 2.5 cm. This
setup is derived from the original design of a 8-fold demultiplexing setup which is

1.1

2.1

3.1

4.1

EOM

Fibre coupler

Mirror mount

PBS/prism mirror
mount

Beam focus

Figure B.1: Design for a 4-fold demultiplexer setup. On the bottom is the legend
of the optomechanical mounts.
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Appendix B. Setup design of the demultiplexer

shown in Fig. B.2. This 8-fold demultiplexer has a resonant EOM inserted in the
input with a delay line to double the number of spatial modes. The current 4-fold
demultiplexer is exactly setup from the 8-fold demultiplexer, but without the
resonant EOM, delay loop and extra optical components. Due to this designing,
the current 4-fold setup can be directly expanded to an 8-fold setup by adding the
extra components while nothing has to change to the parts of the 4-fold setup.

in

f=7.5

d=0

1.1

1.2

2.1

2.2

3.1

3.2

4.14.2

ResEOM

Figure B.2: Original design of the demultiplexer setup, designed for 8-fold demul-
tiplexing. The 4-fold demultiplexer design is directly taken from this design by
removing all paths induced by the large delay loop. Current 4-fold demultiplexer
can be directly expanded to this.
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APPENDIX C
States in entanglement gate

This appendix shows the evolution of the state through the Heralded
Entanglement Gate from chapter 5. A schematic of the gate can be seen in Fig.
5.1. This appendix starts at where paths B’ . and C’ . combine, which is just before
the PBS in the RPBS. Paths A’ D’ already had all their operations. The full state
directly before the PBS in the RPBS is:

|ψABCD′. ⟩ = (C.1)[
1

8
â
′.†
H d̂

′.†
H

(
b̂
′.†
H ĉ

′.†
H + b̂
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H ĉ
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V + b̂

′.†
V ĉ

′.†
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V ĉ

′.†
V

)
+
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8
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V
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′.†
V − b̂

′.†
V ĉ

′.†
H + b̂

′.†
V ĉ
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V
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+
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8
â
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′.†
V − b̂

′.†
V ĉ
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′.†
H ĉ
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ĉ
′.†
H ĉ
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Appendix C. States in entanglement gate

The PBS than acts on paths B′. and C ′. resulting in state:
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′..†
H

ĉ
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′..†
H

ĉ
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−ĉ

′..†
H

ĉ
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The HWPs in paths B′.. and C ′.. that finalise the RPBS are at an angle of 22.5◦
resulting in the output state:
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ĉ
”†
V

+ 2b̂
”†
H
b̂
”†
V
ĉ
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ĉ
”†
H
ĉ
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ĉ
”†
V
ĉ
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”†
H
ĉ
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ĉ
”†
V

− ĉ
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ĉ
”†
H
ĉ
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ĉ
”†
V

+ 2b̂
”†
H
ĉ
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ĉ
”†
V

+ b̂
”†
V
ĉ
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ĉ
”†
H
ĉ
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ĉ
”†
V

− ib̂
”†
V
b̂
”†
V
ĉ
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”†
H
ĉ
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ĉ
”†
V
ĉ
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Appendix C. States in entanglement gate

Which can be simplified be writing the Bell-states in path A’ D’
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”†
H
ĉ
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”†
V
ĉ
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ĉ
”†
V
ĉ
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ĉ
”†
H
ĉ
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ĉ
”†
H
ĉ
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ĉ
”†
V

− 2b̂
”†
V
ĉ
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ĉ
”†
V

+ 2b̂
”†
H
b̂
”†
H
ĉ
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ĉ
”†
V

− 2ĉ
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Appendix C

The heralding is done on a coincidence detection between paths B” and C” thus
we ignore all states that cannot contribute to such a coincidence. The resulting
state of this reduction is not normalised to 1 anymore since we maintain the
normalisation to the full state. The outcome of this reduction is:
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â
”†
H

(
+ib̂

”†
H
ĉ
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â
”†
V

(
+ib̂

”†
H
ĉ
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ĉ
”†
V

− b̂
”†
V
b̂
”†
V
ĉ
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ĉ
”†
V

)
+
i2

64

(
2b̂

”†
H
b̂
”†
H
ĉ
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Applying the creation operators on the vacuum state result in a final state before
detection of:
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(
|H⟩”B |V ⟩”C + |V ⟩”B |H⟩”C

)
−

√
2

8
Ψ

+
A,D

(
|H⟩”B |H⟩”C + |V ⟩”B |V ⟩”C

)
+
i
√
2

32
|H⟩”A |0⟩”D

(
+i |H⟩”B |H,H⟩”C + i |H⟩”B |V, V ⟩”C −

√
2i |H⟩”B |H, V ⟩”C − i |V ⟩”B |H,H⟩”C

− i |V ⟩”B |V, V ⟩”C +
√
2i |V ⟩”B |H, V ⟩”C + |H,H⟩”B |H⟩”C + |V, V ⟩”B |H⟩”C

+
√
2 |H, V ⟩”B |H⟩”C + |H,H⟩”B |V ⟩”C + |V, V ⟩”B |V ⟩”C +

√
2 |H, V ⟩”B |V ⟩”C

)
+
i
√
2

32
|V ⟩”A |0⟩”D

(
+i |H⟩”B |H,H⟩”C + i |H⟩”B |V, V ⟩”C −

√
2i |H⟩”B |H, V ⟩”C − i |V ⟩”B |H,H⟩”C

− i |V ⟩”B |V, V ⟩”C +
√
2i |V ⟩”B |H, V ⟩”C − |H,H⟩”B |H⟩”C − |V, V ⟩”B |H⟩”C

−
√
2 |H, V ⟩”B |H⟩”C − |H,H⟩”B |V ⟩”C − |V, V ⟩”B |V ⟩”C −

√
2 |H, V ⟩”B |V ⟩”C

)
+

√
2

32
|0⟩”A |H⟩”D

(
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√
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+ |V ⟩”B |V, V ⟩”C +
√
2 |V ⟩”B |H, V ⟩”C + i |H,H⟩”B |H⟩”C + i |V, V ⟩”B |H⟩”C

−
√

2i |H, V ⟩”B |H⟩”C − i |H,H⟩”B |V ⟩”C − i |V, V ⟩”B |V ⟩”C +
√
2i |H, V ⟩”B |V ⟩”C

)
+
i
√
2

32
|0⟩”A |V ⟩”D

(
− |H⟩”B |H,H⟩”C − |H⟩”B |V, V ⟩”C −

√
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√
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√
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√
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)
+
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|0⟩”A |0⟩”D

(
|H,H⟩”B |H,H⟩”C + |V, V ⟩”B |V, V ⟩”C + |H,H⟩”B |V, V ⟩”C + |V, V ⟩”B |H,H⟩”C + 2 |H, V ⟩”B |H, V ⟩”C

)
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APPENDIX D
Polarising beamsplitter with limited indistinguishability

Transformation of a polarising beamsplitter with limited efficiency, limited
transmission and reflection extinction and limited indistinguishability of the input
photons. This transfer is used in Ch. 5 to calculate the heralding efficiencies and
state probabilities in case of an imperfect setup. The variables before the double
vertical line are multipliers for that row.
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â
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√
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√
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√
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√
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√
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